A Recent Survey of Vision Transformers for Medical Image Segmentation

作者
Asifullah Khan,Zunaira Rauf,Abdul Rehman Khan,Saima Rathore,Saddam Hussain Khan,N. Jon Shah,Umair Farooq,Hifsa Asif,Aqsa Asif,Umme Zahoora,Rafi Ullah Khalil,Suleman Qamar,Umme Hani Tayyab,Faiza Babar Khan,Abdul Majid,Jeonghwan Gwak
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:13: 191824-191849
标识
DOI:10.1109/access.2025.3618215
摘要

Medical image segmentation plays a crucial role in various healthcare applications, enabling accurate diagnosis, treatment planning, and disease monitoring. Convolutional Neural Networks (CNNs) have demonstrated exceptional performance in this domain due to their proficiency in learning complex patterns from raw data. In recent years, Vision Transformers (ViTs) have gained significant attention as an effective approach for various challenges in image analysis. However, they may lack image-related inductive bias and translational invariance that may affect their performance. To address this, Hybrid Vision Transformers (HVTs) have been introduced, combining CNNs and Transformer layers to effectively analyze features at both local and global scales. Building on the success of ViTs and HVTs, this paper reviews recent advancements in these architectures for medical image segmentation. We classify approaches based on architectural design and review state-of-the-art models for different imaging modalities, analyzing their limitations and potential solutions. Additionally, we highlight key challenges, discuss current trends and propose future research directions in the field. This review aims to provide valuable insights for researchers and professionals working on ViT-based medical image segmentation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杨淼发布了新的文献求助10
1秒前
001完成签到,获得积分10
1秒前
2秒前
小蘑菇应助若尘采纳,获得10
3秒前
脑脊液发布了新的文献求助10
3秒前
3秒前
倒没有你的硫氰酸完成签到,获得积分10
4秒前
WRC完成签到,获得积分10
5秒前
顺心的绝山完成签到,获得积分10
6秒前
6秒前
乐乐应助xiaou采纳,获得10
6秒前
7秒前
7秒前
8秒前
9秒前
淡淡土豆应助LCY采纳,获得10
9秒前
量子星尘发布了新的文献求助10
10秒前
Rita完成签到,获得积分10
10秒前
杨胜根发布了新的文献求助10
11秒前
yeti完成签到,获得积分20
11秒前
12秒前
十六发布了新的文献求助10
13秒前
怪味薯片发布了新的文献求助10
13秒前
蝴蝶变成毛毛虫完成签到,获得积分10
15秒前
16秒前
桐桐应助lilin采纳,获得10
16秒前
淡淡土豆应助不准吃烤肉采纳,获得10
17秒前
无极微光应助TJW采纳,获得20
18秒前
xiaou发布了新的文献求助10
20秒前
20秒前
20秒前
20秒前
DHMO完成签到,获得积分10
22秒前
顾矜应助叶叶采纳,获得10
23秒前
瑾进完成签到 ,获得积分10
23秒前
核桃应助科研通管家采纳,获得30
24秒前
zyx应助科研通管家采纳,获得10
24秒前
科研通AI6应助科研通管家采纳,获得10
24秒前
852应助科研通管家采纳,获得10
24秒前
英俊的铭应助科研通管家采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5513818
求助须知:如何正确求助?哪些是违规求助? 4607915
关于积分的说明 14507365
捐赠科研通 4543466
什么是DOI,文献DOI怎么找? 2489614
邀请新用户注册赠送积分活动 1471533
关于科研通互助平台的介绍 1443560