Complementary Feature Fusion Network for Few-Shot Segmentation of Steel Surface Defect

弹丸 分割 特征(语言学) 融合 人工智能 曲面(拓扑) 模式识别(心理学) 计算机科学 材料科学 单发 计算机视觉 光学 数学 物理 几何学 冶金 语言学 哲学
作者
Yuzhong Zhang,Zhuo Qin,Zhiheng Zhao,Shuqi Liu,Shuangbao Shu,Tengda Zhang,Haibing Hu
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/adead7
摘要

Abstract Steel surface defect segmentation plays a critical role in improving production efficiency and ensuring product quality traceability. However, existing segmentation networks, which depend on large amounts of labeled samples for training, still face challenges in segmenting certain sparse defect types. To address this, a multi-source fusion framework is proposed in this work for few-shot segmentation of steel surface defects. This framework proposes a multi-source complementary information extraction module that integrates global-local semantics and cross-region interactions between support and query features, enabling accurate capture of complex structures and variations in images. Meanwhile, a multi-scale spatial-channel attention module is introduced to highlight foreground defect semantics while suppressing irrelevant background noise in support features. Finally, a multi-source information fusion module is proposed to consolidate these complementary features with the query feature and the support prototype for generating a comprehensive defect representation. Additionally, a support decoder is integrated into the framework to generate the auxiliary support mask prediction, while a dual-loss training strategy is employed to bridge the gap between query and support features learning. Comparative experiments against state-of-the-art methods on the FSSD-12 dataset demonstrate that our framework achieves the best segmentation performance, outperforming the second-best model by 2.9% (1-shot) and 3.4% (5-shot) in mIoU, with corresponding FB-IoU gains of 1.3% and 2.5%. Meanwhile, ablation studies validate the synergistic contributions of our proposed modules, showing that our full model surpasses the baseline by 14.2%/11.9% in mIoU and 12.8%/7.2% in FB-IoU improvement for 1-shot/5-shot settings, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wing发布了新的文献求助10
刚刚
和谐的幼枫完成签到,获得积分10
刚刚
傲娇豪发布了新的文献求助10
刚刚
刚刚
专注的又亦完成签到,获得积分10
刚刚
1秒前
刘梓完成签到,获得积分10
1秒前
huayizhang发布了新的文献求助10
2秒前
小青椒应助郭鑫鹏采纳,获得100
2秒前
漂流hane发布了新的文献求助10
2秒前
完美世界应助淡淡茉莉采纳,获得10
2秒前
JY5发布了新的文献求助10
2秒前
63941367发布了新的文献求助10
2秒前
勤劳凡雁完成签到,获得积分10
3秒前
聪慧小霜应助过时的茗茗采纳,获得10
3秒前
花花完成签到,获得积分10
3秒前
4秒前
cdercder完成签到,获得积分0
4秒前
5秒前
5秒前
叶子完成签到,获得积分20
6秒前
6秒前
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
爆米花应助加一点荒谬采纳,获得10
7秒前
冷傲半邪发布了新的文献求助10
7秒前
林智卓完成签到,获得积分10
8秒前
8秒前
JY5完成签到,获得积分10
8秒前
8秒前
ni发布了新的文献求助30
9秒前
个性的紫菜应助陆千万采纳,获得20
10秒前
10秒前
11秒前
guohuiting完成签到,获得积分20
11秒前
12秒前
犹豫若云发布了新的文献求助10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4587643
求助须知:如何正确求助?哪些是违规求助? 4003440
关于积分的说明 12393718
捐赠科研通 3679992
什么是DOI,文献DOI怎么找? 2028407
邀请新用户注册赠送积分活动 1061844
科研通“疑难数据库(出版商)”最低求助积分说明 948023