A multi-scale neighbor topology guided transformer and Kolmogorov-Arnold network enhanced feature learning model for disease-related circRNA prediction

网络拓扑 计算机科学 人工智能 特征(语言学) 变压器 拓扑(电路) 比例(比率) 模式识别(心理学) 机器学习 计算机网络 电气工程 物理 工程类 电压 量子力学 语言学 哲学
作者
Ping Xuan,Haijiang Li,Hui Cui,Zelong Xu,Toshiya Nakaguchi,Tiangang Zhang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:PP: 1-16
标识
DOI:10.1109/jbhi.2025.3600406
摘要

As circular non-coding RNA (circRNA) is closely associated with various human diseases, identifying disease-related circRNAs can provide a deeper understanding of the mechanisms underlying disease pathogenesis. Advanced circRNA-disease association prediction methods mainly focus on graph learning techniques such as graph convolutional networks and graph attention networks. However, these methods do not fully encode the multi-scale neighbor topologies of each node, and the dependencies among the pairwise attributes. We propose a multi-scale neighbor topology-guided transformer with Kolmogorov-Arnold network (KAN) enhanced feature learning for circRNA and disease association prediction, termed MKCD. The model integrates multi-scale neighbor topology, complex relationships among multiple nodes, and the global and local dependencies of pairwise attributes. First, MKCD incorporates an adaptive multi-scale neighbor topology embedding construction strategy (AMNE), which generates neighbor topologies covering varying scopes of neighbors by performing random walks on a circRNA-disease-miRNA heterogeneous graph. Second, we design a dynamic multi-scale neighbor topology-guided transformer (DMTT) that leverages the multi-scale neighbor topologies to guide the learning of relationships among circRNA, miRNA, and disease nodes. The multi-scale neighbor topology is dynamically evolved, providing adaptive guidance to the transformer's learning process. Third, we establish a feature-gated network (FGN) to evaluate the importance of topological features derived from DMTT and the original node attributes. Finally, we propose an adaptive joint convolutional neural networks and KAN learning strategy (ACK) to learn the global and local dependencies of circRNA and disease node pair features. Comprehensive comparison experiments show that MKCD outperforms six state-of-the-art methods, improving AUC and AUPR by at least 14.1% and 7.6%, respectively. Ablation experiments further validate the effectiveness of AMNE, DMTT, FGN and ACK innovations. Case studies on three diseases further validate the application value of our method in discovering reliable circRNA candidates for diseases of focus. The source code and datasets are freely available at https://github.com/pingxuan-hlju/MKCD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科目三应助Gx8xaFXO采纳,获得10
1秒前
斯人发布了新的文献求助10
2秒前
2秒前
王铭轩发布了新的文献求助30
2秒前
李金玉发布了新的文献求助10
2秒前
十三州府完成签到,获得积分10
3秒前
4秒前
kids发布了新的文献求助10
5秒前
eason完成签到,获得积分10
6秒前
franklin_fsz给Dean的求助进行了留言
6秒前
鹈鹕警长完成签到,获得积分10
6秒前
nuanfengf完成签到,获得积分10
6秒前
7秒前
小丹发布了新的文献求助10
7秒前
浮游应助尹天扬采纳,获得20
8秒前
整齐的千万完成签到,获得积分10
8秒前
朗月清秋Y完成签到,获得积分10
8秒前
9秒前
星辰发布了新的文献求助10
10秒前
多情赛君完成签到 ,获得积分10
10秒前
研友_5Y9X75完成签到,获得积分10
10秒前
虞智闳发布了新的文献求助10
11秒前
打打应助金木木采纳,获得10
11秒前
11秒前
机灵冬灵完成签到 ,获得积分10
11秒前
orixero应助经小夏采纳,获得10
11秒前
12秒前
范范完成签到,获得积分10
12秒前
万能图书馆应助Camellia采纳,获得10
14秒前
传奇3应助儒雅珩采纳,获得10
14秒前
111完成签到,获得积分10
15秒前
那就再来一次完成签到,获得积分10
15秒前
王东发布了新的文献求助10
16秒前
科研通AI6应助Susie采纳,获得10
17秒前
Giannis发布了新的文献求助10
17秒前
脑洞疼应助王涛采纳,获得10
17秒前
NexusExplorer应助火星上易烟采纳,获得10
17秒前
18秒前
18秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5342994
求助须知:如何正确求助?哪些是违规求助? 4478635
关于积分的说明 13940380
捐赠科研通 4375604
什么是DOI,文献DOI怎么找? 2404155
邀请新用户注册赠送积分活动 1396661
关于科研通互助平台的介绍 1369026