Sensor Malfunction Simulation and Data Imputation using Deep Learning in Precision Agriculture

计算机科学 插补(统计学) 人工智能 数据挖掘 实时计算 机器学习 缺少数据
作者
S. Aasha,Sugumar Rajendran
出处
期刊:Indian journal of science and technology [Indian Society for Education and Environment]
卷期号:18 (25): 1985-1997
标识
DOI:10.17485/ijst/v18i25.779
摘要

Objectives: This research initiative develops a new GAN-based technique for handling sensor malfunction-induced data gaps in precision agriculture data through robust precision improvement of machine learning applications. Methods: A GAN-based imputation method operates to recover missing data points from agricultural datasets. The analysis of multiple sensor parameters created missing data by using conditional probability rules. The GAN received training through a combination of authentic data and simulated information to make its value predictions and imputation capabilities. Findings: The GAN-based imputation process proved better than standard methods since it achieved superior results in measurement accuracy and precision together with higher recall and F1-score. The proposed technique reduced errors related to missing data more significantly than the standard methods imputation. Traditional imputation techniques proved ineffective in datasets with sensor malfunctions, but the model achieved better outcomes in these situations. The experimental findings established that GAN-based imputation presents potential worth for real-time agricultural data processing because it helps produce reliable predictions which benefit precision farming operations. Novelty: GAN-based imputation method for agricultural IoT systems becomes a proposed solution which processes non-random missing data along with sensor malfunctions in an efficient light-weight system. Keywords: IoT, Precision Agriculture, Deep Learning, Machine Learning, Data Imputation, Sensors

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
愉快的灭男完成签到,获得积分10
1秒前
1秒前
keke完成签到,获得积分10
1秒前
1秒前
乐天发布了新的文献求助10
2秒前
sophiemore完成签到,获得积分10
4秒前
4秒前
zhhua完成签到,获得积分10
5秒前
zsk1122发布了新的文献求助10
5秒前
5秒前
5秒前
万能图书馆应助大佬采纳,获得10
5秒前
9秒前
9秒前
爱大美发布了新的文献求助10
9秒前
loco完成签到,获得积分20
9秒前
小二郎应助heyujie采纳,获得10
11秒前
哈哈完成签到 ,获得积分10
11秒前
包容新蕾完成签到 ,获得积分10
11秒前
12秒前
明理苏完成签到 ,获得积分10
12秒前
Owen应助科研通管家采纳,获得10
13秒前
Akim应助科研通管家采纳,获得10
13秒前
小二郎应助科研通管家采纳,获得10
13秒前
乐乐应助科研通管家采纳,获得10
13秒前
Lucas应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
在水一方应助科研通管家采纳,获得10
13秒前
星辰大海应助科研通管家采纳,获得10
13秒前
bkagyin应助科研通管家采纳,获得10
13秒前
南风应助科研通管家采纳,获得10
13秒前
JamesPei应助科研通管家采纳,获得10
13秒前
共享精神应助科研通管家采纳,获得10
13秒前
南风应助科研通管家采纳,获得10
13秒前
14秒前
小二郎应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
Hello应助科研通管家采纳,获得10
14秒前
GingerF应助科研通管家采纳,获得50
14秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4042112
求助须知:如何正确求助?哪些是违规求助? 3579766
关于积分的说明 11382352
捐赠科研通 3308332
什么是DOI,文献DOI怎么找? 1820381
邀请新用户注册赠送积分活动 893373
科研通“疑难数据库(出版商)”最低求助积分说明 815583