A novel personalized time‐varying biomechanical model for estimating lung tumor motion and deformation

弹性(物理) 线弹性 数学 弹性网正则化 图像配准 人口 有限元法 计算机科学 人工智能 统计 回归 材料科学 医学 结构工程 工程类 环境卫生 图像(数学) 复合材料
作者
Liang K. Tan,Wei Hu,Liyuan Chen,Huanli Luo,Li Shi,Bin Feng,Xin Yang,Yongzhong Wu,Ying Wang,Fu Jin
出处
期刊:Medical Physics [Wiley]
卷期号:52 (8)
标识
DOI:10.1002/mp.18086
摘要

Abstract Background Accurate prediction of lung tumor motion and deformation (LTMD) is essential for precise radiotherapy. However, existing models often rely on static, population‐based material parameters, overlooking patient‐specific and time‐varying lung biomechanics. Personalized dynamic models that capture temporal changes in lung elasticity are needed to improve LTMD prediction and guide treatment planning more effectively. Purpose This study aims to develop a patient‐specific, time‐varying biomechanical model to predict LTMD more accurately. Methods Four‐dimensional computed tomography (4DCT) images from 27 patients, each with 10 breathing phases, were analyzed. A finite element model was developed, modeling lung as a hyper‐elastic material and tumor as linear elastic. Lung elasticity parameters, including Young's modulus ( E ) and Poisson's ratio ( v ), were optimized for each phase using Efficient Global Optimization algorithm. Four functions were tested to model the variation of E and v across different phases. For each patient, average values of these parameters were computed, and their correlation with 11 clinical features was analyzed. The model's accuracy in predicting LTMD was evaluated using tumor center of mass motion error (ΔTCM) and volumetric Dice similarity coefficient (vDSC). Factors influencing the model's accuracy were investigated. Specifically, lung surface traction vector fields (STVFs) were calculated during the transition from end‐expiration to end‐inspiration phases, and their relationship with LTMD was also analyzed. Results The first‐order Fourier function provided the best fit among four tested functions, with average R‐squared values of 0.93 ± 0.03 for E and 0.91 ± 0.03 for v . The average values of E and v were significantly correlated with patient age. The model showed a mean ΔTCM of 1.47 ± 0.68 mm and a mean vDSC of 0.93 ± 0.02. A negative correlation was found between tumor deformation vDSC and ΔTCM ( r = −0.55, p < 0.05). Higher STVFs were observed near diaphragm and intercostal muscles, with correlations between STVFs and tumor motion amplitude ( r ≥ 0.92, p < 0.05). Conclusions These findings offer new insights into developing personalized, time‐varying motion management strategies of lung tumors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
渴望者发布了新的文献求助10
2秒前
li发布了新的文献求助10
2秒前
JamesPei应助忐忑的小兔子采纳,获得30
4秒前
思源应助壮观的书包采纳,获得10
5秒前
浮游应助li采纳,获得10
6秒前
Lisa完成签到,获得积分10
7秒前
圈圈完成签到,获得积分10
8秒前
cong666完成签到,获得积分10
9秒前
10秒前
10秒前
机智的乌完成签到,获得积分10
10秒前
徐豪杰关注了科研通微信公众号
11秒前
11秒前
Ava应助务实的不悔采纳,获得10
12秒前
Rrr发布了新的文献求助10
13秒前
SciGPT应助嘻嘻哈哈眼药水采纳,获得10
14秒前
量子星尘发布了新的文献求助10
16秒前
Al发布了新的文献求助20
17秒前
18秒前
19秒前
境屾完成签到,获得积分10
20秒前
20秒前
Rrr完成签到,获得积分10
20秒前
21秒前
天天快乐应助kelly9110采纳,获得10
21秒前
Jasper应助玛琳卡迪马采纳,获得10
22秒前
torfun完成签到,获得积分10
22秒前
22秒前
22秒前
甜甜绮烟发布了新的文献求助10
23秒前
23秒前
444发布了新的文献求助10
23秒前
lxx关闭了lxx文献求助
24秒前
25秒前
徐豪杰发布了新的文献求助10
25秒前
ypp完成签到,获得积分10
26秒前
26秒前
冰冰大王发布了新的文献求助10
26秒前
酷波er应助胡可采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Real Analysis Theory of Measure and Integration 3rd Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4914326
求助须知:如何正确求助?哪些是违规求助? 4188713
关于积分的说明 13008961
捐赠科研通 3957522
什么是DOI,文献DOI怎么找? 2169834
邀请新用户注册赠送积分活动 1188081
关于科研通互助平台的介绍 1095713