Enhancing Multi-disease Diagnosis of Chest X-rays with Advanced Deep-learning Networks in Real-world Data

二元分类 接收机工作特性 人工智能 计算机科学 乙状窦函数 深度学习 肺不张 二进制数 机器学习 医学 气胸 人工神经网络 放射科 支持向量机 内科学 数学 算术
作者
Yuyang Chen,Yiliang Wan,Feng Pan
出处
期刊:Journal of Digital Imaging [Springer Nature]
卷期号:36 (4): 1332-1347 被引量:11
标识
DOI:10.1007/s10278-023-00801-4
摘要

The current artificial intelligence (AI) models are still insufficient in multi-disease diagnosis for real-world data, which always present a long-tail distribution. To tackle this issue, a long-tail public dataset, "ChestX-ray14," which involved fourteen (14) disease labels, was randomly divided into the train, validation, and test sets with ratios of 0.7, 0.1, and 0.2. Two pretrained state-of-the-art networks, EfficientNet-b5 and CoAtNet-0-rw, were chosen as the backbones. After the fully-connected layer, a final layer of 14 sigmoid activation units was added to output each disease's diagnosis. To achieve better adaptive learning, a novel loss (Lours) was designed, which coalesced reweighting and tail sample focus. For comparison, a pretrained ResNet50 network with weighted binary cross-entropy loss (LWBCE) was used as a baseline, which showed the best performance in a previous study. The overall and individual areas under the receiver operating curve (AUROC) for each disease label were evaluated and compared among different models. Group-score-weighted class activation mapping (Group-CAM) is applied for visual interpretations. As a result, the pretrained CoAtNet-0-rw + Lours showed the best overall AUROC of 0.842, significantly higher than ResNet50 + LWBCE (AUROC: 0.811, p = 0.037). Group-CAM presented that the model could pay the proper attention to lesions for most disease labels (e.g., atelectasis, edema, effusion) but wrong attention for the other labels, such as pneumothorax; meanwhile, mislabeling of the dataset was found. Overall, this study presented an advanced AI diagnostic model achieving a significant improvement in the multi-disease diagnosis of chest X-rays, particularly in real-world data with challenging long-tail distributions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助文艺的幻露采纳,获得10
刚刚
4892给4892的求助进行了留言
刚刚
刚刚
xinyi发布了新的文献求助10
1秒前
文献下载中完成签到,获得积分10
2秒前
边走边听发布了新的文献求助10
2秒前
完美世界应助威武的幻波采纳,获得10
3秒前
爆米花应助大力蚂蚁采纳,获得10
3秒前
科研通AI6应助cometx采纳,获得30
3秒前
上官若男应助小李采纳,获得10
3秒前
xwx完成签到,获得积分10
3秒前
龙仔子发布了新的文献求助10
3秒前
科研通AI6应助陈陈采纳,获得30
3秒前
冷静寒风完成签到,获得积分20
5秒前
朴素天川发布了新的文献求助10
5秒前
HH发布了新的文献求助10
6秒前
JamesPei应助笑点低的满天采纳,获得10
6秒前
小蘑菇应助Acane采纳,获得10
6秒前
予秋发布了新的文献求助10
7秒前
9秒前
9秒前
绾和发布了新的文献求助30
9秒前
自信戒指完成签到,获得积分10
10秒前
FashionBoy应助xwx采纳,获得10
11秒前
hyl完成签到,获得积分10
11秒前
呆萌谷兰完成签到,获得积分20
11秒前
科研通AI6应助边走边听采纳,获得10
11秒前
邓瑞彬给邓瑞彬的求助进行了留言
12秒前
大模型应助花痴的酒窝采纳,获得10
12秒前
12秒前
伏坎完成签到,获得积分10
12秒前
科研通AI6应助bbbao采纳,获得10
13秒前
无尽夏完成签到,获得积分10
13秒前
2752543083发布了新的文献求助10
13秒前
13秒前
犹豫豆芽完成签到 ,获得积分10
13秒前
14秒前
14秒前
15秒前
科研通AI6应助Mn采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5321192
求助须知:如何正确求助?哪些是违规求助? 4462953
关于积分的说明 13888286
捐赠科研通 4354063
什么是DOI,文献DOI怎么找? 2391525
邀请新用户注册赠送积分活动 1385098
关于科研通互助平台的介绍 1354881