Identification of sweetpotato black spot disease caused by Ceratocystis fimbriata by quartz crystal microbalance array

石英晶体微天平 三氯氢硅 傅里叶变换红外光谱 分子印迹聚合物 沸石咪唑盐骨架 质谱法 分析化学(期刊) 材料科学 化学工程 化学 色谱法 金属有机骨架 光电子学 选择性 吸附 有机化学 催化作用 工程类
作者
Linjiang Pang,Lu Zhang,Zhenhe Wang,Guoquan Lu,Xia Sun,Jiyu Cheng,Shihao Chen,Guangyu Qi,Xiaoyi Duan,Rui Xu,Wei Chen,Xinghua Lu
出处
期刊:Sensors and Actuators B-chemical [Elsevier BV]
卷期号:386: 133761-133761 被引量:7
标识
DOI:10.1016/j.snb.2023.133761
摘要

Sweetpotato black spot disease caused by Ceratocystis fimbriata is a major sweetpotato disease that not only affects yield and storage but also damages human or animal health. Herein, a four-element quartz crystal microbalance (QCM) gas sensor array based on molecularly imprinted polymers (MIPs) and zeolitic imidazolate frameworks (ZIFs) materials were reported to differentiate healthy sweetpotatoes and sick sweetpotatoes. Several volatile organic compounds, namely citronellol, heptanal, benzaldehyde, and 2-pentylfuran, were selected for detection based on the results of gas chromatography-mass spectrometry (GC-MS). The MIPs and ZIFs were characterized by X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and nitrogen adsorption-desorption, and the results show that materials were successfully obtained. The four sensors based on the as-prepared materials exhibited excellent sensitivity and selectivity toward target gases. Finally, the sensor array was applied to identify sick sweetpotatoes. Frequency shift was selected as the eigenvalue and quadratic support vector machine (QSVM) and weighted k-nearest neighbor (WKNN) models were employed for discrimination. QSVM and WKNN exhibited 100% accuracy in classification, proving that the sensor array can be used for the identification of Ceratocystis-fimbriata-infested sweetpotatoes. This study may contribute to the development of gas sensor arrays for use in agri-food quality control and protection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LQH完成签到,获得积分10
1秒前
沉静觅风完成签到 ,获得积分10
2秒前
清脆不斜发布了新的文献求助30
2秒前
冲冲冲啊完成签到,获得积分10
3秒前
juju完成签到,获得积分10
3秒前
迷路小丸子完成签到,获得积分10
3秒前
混世大魔王先生完成签到,获得积分10
3秒前
kiki完成签到,获得积分10
4秒前
zhuozhuo关注了科研通微信公众号
4秒前
5秒前
7秒前
Ade阿德完成签到 ,获得积分10
7秒前
GNY完成签到 ,获得积分10
8秒前
8秒前
自觉的K完成签到,获得积分10
9秒前
9秒前
8788完成签到,获得积分10
10秒前
呆萌芙蓉发布了新的文献求助10
10秒前
酒仙完成签到,获得积分10
10秒前
sasa完成签到,获得积分10
10秒前
Ran-HT完成签到,获得积分10
10秒前
喝到几点完成签到,获得积分10
10秒前
文成发布了新的文献求助10
11秒前
Lucas应助Gavin采纳,获得10
11秒前
11秒前
拉长的初彤完成签到 ,获得积分10
11秒前
卢浩完成签到,获得积分10
12秒前
科研小民工应助PPSlu采纳,获得200
12秒前
13秒前
13秒前
13秒前
wm完成签到,获得积分10
13秒前
隔岸发布了新的文献求助20
13秒前
Kate发布了新的文献求助10
13秒前
呱呱太完成签到,获得积分10
14秒前
ly完成签到,获得积分10
15秒前
拉长的初彤关注了科研通微信公众号
15秒前
王了了完成签到 ,获得积分10
16秒前
赘婿应助专一的书雪采纳,获得10
16秒前
月亮明星完成签到,获得积分10
17秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792971
求助须知:如何正确求助?哪些是违规求助? 3337641
关于积分的说明 10286083
捐赠科研通 3054212
什么是DOI,文献DOI怎么找? 1675888
邀请新用户注册赠送积分活动 803875
科研通“疑难数据库(出版商)”最低求助积分说明 761578