计算机科学
可视化
稳健性(进化)
数据可视化
信息可视化
实施
方案(数学)
数据挖掘
加密
情报检索
集合(抽象数据类型)
过程(计算)
软件工程
计算机安全
程序设计语言
化学
数学分析
操作系统
基因
生物化学
数学
作者
Wei Chen,Yating Wei,Zhiyong Wang,Shuyue Zhou,Bingru Lin,Zhiguang Zhou
标识
DOI:10.1109/tvcg.2023.3261938
摘要
We present a novel privacy preservation strategy for aggregated visual query of decentralized data. The key idea is to imitate the flowchart of the federated learning framework, and reformulate the visualization process within a federated infrastructure. The federation of visualization is fulfilled by leveraging a shared global module that composes the encrypted externalizations of transformed visual features of data pieces in local modules. We design two implementations of federated visualization: a prediction-based scheme, and a query-based scheme. We demonstrate the effectiveness of our approach with a set of visual forms, and verify its robustness with evaluations. We report the value of federated visualization in real scenarios with an expert review.
科研通智能强力驱动
Strongly Powered by AbleSci AI