Reducing Transient and Steady State Electricity Consumption in HVAC Using Learning-Based Model-Predictive Control

暖通空调 空调 模型预测控制 瞬态(计算机编程) 能源消耗 汽车工程 高效能源利用 改装 计算机科学 通风(建筑) 模拟 试验台 工程类 控制工程 控制(管理) 机械工程 人工智能 电气工程 操作系统 结构工程 计算机网络
作者
Anil Aswani,Neal Master,Jay Taneja,David Culler,Claire J. Tomlin
出处
期刊:Proceedings of the IEEE [Institute of Electrical and Electronics Engineers]
卷期号:100 (1): 240-253 被引量:289
标识
DOI:10.1109/jproc.2011.2161242
摘要

Heating, ventilation, and air conditioning (HVAC) systems are an important target for efficiency improvements through new equipment and retrofitting because of their large energy footprint. One type of equipment that is common in homes and some offices is an electrical, single-stage heat pump air conditioner (AC). To study this setup, we have built the Berkeley Retrofitted and Inexpensive HVAC Testbed for Energy Efficiency (BRITE) platform. This platform allows us to actuate an AC unit that controls the room temperature of a computer laboratory on the Berkeley campus that is actively used by students, while sensors record room temperature and AC energy consumption. We build a mathematical model of the temperature dynamics of the room, and combining this model with statistical methods allows us to compute the heating load due to occupants and equipment using only a single temperature sensor. Next, we implement a control strategy that uses learning-based model-predictive control (MPC) to learn and compensate for the amount of heating due to occupancy as it varies throughout the day and year. Experiments on BRITE show that our techniques result in a 30%-70% reduction in energy consumption as compared to two-position control, while still maintaining a comfortable room temperature. The energy savings are due to our control scheme compensating for varying occupancy, while considering the transient and steady state electrical consumption of the AC. Our techniques can likely be generalized to other HVAC systems while still maintaining these energy saving features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
丘比特应助木风落采纳,获得10
2秒前
3秒前
YE发布了新的文献求助10
5秒前
zombleq发布了新的文献求助10
6秒前
功不唐捐发布了新的文献求助10
6秒前
Jasper应助Loik采纳,获得10
6秒前
田様应助健壮惜梦采纳,获得10
7秒前
7秒前
hb完成签到,获得积分10
7秒前
8秒前
Cxxxxxxv完成签到 ,获得积分10
9秒前
10秒前
flyia完成签到,获得积分10
11秒前
schnappi发布了新的文献求助10
12秒前
12秒前
Ma_Cong完成签到,获得积分10
12秒前
12秒前
欣265完成签到,获得积分10
13秒前
WELXCNK完成签到,获得积分10
14秒前
Yan发布了新的文献求助10
15秒前
15秒前
Giraffe完成签到,获得积分10
16秒前
13799772947发布了新的文献求助10
16秒前
斯文墨镜发布了新的文献求助10
16秒前
17秒前
充电宝应助yuan采纳,获得10
19秒前
Dk应助勤劳的水桃采纳,获得20
19秒前
科研通AI5应助唐老丫采纳,获得10
19秒前
南夏发布了新的文献求助20
19秒前
19秒前
我是老大应助littleE采纳,获得10
20秒前
冰火完成签到,获得积分10
21秒前
23秒前
23秒前
Luffy应助kikiL采纳,获得10
23秒前
健壮惜梦发布了新的文献求助10
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Solid-Liquid Interfaces 600
A study of torsion fracture tests 510
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4751776
求助须知:如何正确求助?哪些是违规求助? 4097076
关于积分的说明 12676346
捐赠科研通 3809730
什么是DOI,文献DOI怎么找? 2103383
邀请新用户注册赠送积分活动 1128550
关于科研通互助平台的介绍 1005521