暖通空调
空调
模型预测控制
瞬态(计算机编程)
能源消耗
汽车工程
高效能源利用
改装
电
计算机科学
通风(建筑)
模拟
试验台
工程类
控制工程
控制(管理)
机械工程
人工智能
电气工程
操作系统
结构工程
计算机网络
作者
Anil Aswani,Neal Master,Jay Taneja,David Culler,Claire J. Tomlin
出处
期刊:Proceedings of the IEEE
[Institute of Electrical and Electronics Engineers]
日期:2011-08-16
卷期号:100 (1): 240-253
被引量:289
标识
DOI:10.1109/jproc.2011.2161242
摘要
Heating, ventilation, and air conditioning (HVAC) systems are an important target for efficiency improvements through new equipment and retrofitting because of their large energy footprint. One type of equipment that is common in homes and some offices is an electrical, single-stage heat pump air conditioner (AC). To study this setup, we have built the Berkeley Retrofitted and Inexpensive HVAC Testbed for Energy Efficiency (BRITE) platform. This platform allows us to actuate an AC unit that controls the room temperature of a computer laboratory on the Berkeley campus that is actively used by students, while sensors record room temperature and AC energy consumption. We build a mathematical model of the temperature dynamics of the room, and combining this model with statistical methods allows us to compute the heating load due to occupants and equipment using only a single temperature sensor. Next, we implement a control strategy that uses learning-based model-predictive control (MPC) to learn and compensate for the amount of heating due to occupancy as it varies throughout the day and year. Experiments on BRITE show that our techniques result in a 30%-70% reduction in energy consumption as compared to two-position control, while still maintaining a comfortable room temperature. The energy savings are due to our control scheme compensating for varying occupancy, while considering the transient and steady state electrical consumption of the AC. Our techniques can likely be generalized to other HVAC systems while still maintaining these energy saving features.
科研通智能强力驱动
Strongly Powered by AbleSci AI