Pre-treatment white blood cell subtypes as prognostic indicators in ovarian cancer

医学 多元分析 单变量分析 白细胞 卵巢癌 内科学 肿瘤科 揭穿 癌症 嗜酸性粒细胞 阶段(地层学) 胃肠病学 生物 古生物学 哮喘
作者
Samir N. Bishara,Michelle Griffin,Anna Cargill,Anish Bali,Martin Gore,Stan B. Kaye,J. H. Shepherd,Philippe Van Trappen
出处
期刊:European Journal of Obstetrics & Gynecology and Reproductive Biology [Elsevier BV]
卷期号:138 (1): 71-75 被引量:57
标识
DOI:10.1016/j.ejogrb.2007.05.012
摘要

Inflammatory cells can both suppress and stimulate tumour growth and their influence on clinical outcome in cancer patients has been studied in various cancer types. Here we have investigated their influence on outcome in primary epithelial ovarian cancer.Serum white blood cell numbers according to subtype were recorded prior to treatment in 136 patients with primary epithelial ovarian cancer. Their correlation with overall survival and disease-free survival was analysed using both univariate and multivariate analysis adjusting for the known prognostic factors (age, stage and debulking status).Multivariate analysis demonstrated that a lower lymphocyte fraction of total white blood cells was significantly associated with mortality (p<0.01). On univariate analysis (p=0.0027, HR=1.15), and multivariate analysis of those patients who were optimally debulked (p=0.036, HR=1.17), a higher monocyte count was significantly associated with recurrence. On multivariate analysis amongst those who were suboptimally debulked, a higher eosinophil count was predictive of both recurrence (p=0.0037, HR=1.77) and mortality (p=0.033, HR=1.73).High monocyte counts amongst those who were optimally debulked independently predict adverse outcome in primary epithelial ovarian cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
12334发布了新的文献求助10
1秒前
1秒前
脑洞疼应助lql采纳,获得10
1秒前
科研通AI5应助苗月月采纳,获得30
1秒前
chai完成签到,获得积分10
2秒前
3秒前
Hello应助林平之采纳,获得10
3秒前
夜雨潇潇完成签到,获得积分10
3秒前
动人的芾发布了新的文献求助30
4秒前
pzc发布了新的文献求助10
4秒前
W66发布了新的文献求助10
5秒前
成就的涫完成签到,获得积分10
6秒前
chai发布了新的文献求助10
6秒前
滕遥发布了新的文献求助10
8秒前
8秒前
炙热的豆芽完成签到,获得积分10
9秒前
土豪的成仁完成签到,获得积分10
9秒前
FashionBoy应助小妖采纳,获得10
10秒前
阿江完成签到,获得积分20
10秒前
10秒前
pl就是你完成签到,获得积分10
11秒前
11秒前
Demons发布了新的文献求助10
11秒前
溪溪发布了新的文献求助10
12秒前
12秒前
12秒前
次一口多多完成签到,获得积分10
12秒前
充电宝应助SN采纳,获得10
13秒前
wanci应助AI采纳,获得10
13秒前
赘婿应助qing采纳,获得10
14秒前
gtt发布了新的文献求助30
16秒前
16秒前
17秒前
Hello应助one_more_thing采纳,获得10
17秒前
17秒前
fgldlb发布了新的文献求助20
17秒前
直率冷之发布了新的文献求助10
17秒前
18秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Fatigue of Materials and Structures 260
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
An Integrated Solution for Application of Next-Generation Sequencing in Newborn Screening 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831915
求助须知:如何正确求助?哪些是违规求助? 3374157
关于积分的说明 10483719
捐赠科研通 3094060
什么是DOI,文献DOI怎么找? 1703290
邀请新用户注册赠送积分活动 819345
科研通“疑难数据库(出版商)”最低求助积分说明 771451