硫系化合物
材料科学
钒
范德瓦尔斯力
插层(化学)
相(物质)
剥脱关节
二硫化钼
过渡金属
催化作用
化学物理
纳米技术
化学工程
无机化学
分子
石墨烯
光电子学
冶金
物理
工程类
生物化学
有机化学
化学
作者
Zhiguo Du,Jianan Gu,Zhenjiang Cao,Haiyang Wang,Qi Zhao,Yuxuan Ye,Bin Li,Weihua Chen,Chuntai Liu,Shubin Yang
标识
DOI:10.1002/aenm.202200943
摘要
Abstract Although 2D non‐van der Waals (vdW) layers show many intriguing physical and chemical properties as well as wide applications in the fields of electronics, catalysis, and energy storage, they still lack efficient synthetic approaches owing to their three‐dimensionally bonded structures. Here, a facile approach to produce 2D non‐vdW transition‐metal chalcogenide (TMC) layers based on the conversion of vanadium‐based MAX phase (V 2 GeC) at high temperatures in hydrogen sulfide gas is developed. Associated with the etching of the germanium layers from the MAX phase, the vanadium layers are transformed into 2D non‐vdW V 3 S 4 layers. This originates from the self‐intercalation of ordered V atoms within the vdW space of intermediated vdW vanadium disulfide layers during the conversion reaction. Owing to the ultrathin character, highly exposed active surface, and unique vacancy‐enriched structure, the resultant 2D non‐vdW V 3 S 4 layers deliver a high reversible capacity of 341 mAh g −1 , good rate capabilities, and long‐term cycling performance for zinc storage.
科研通智能强力驱动
Strongly Powered by AbleSci AI