A novel quantitative relationship neural network for explainable cognitive diagnosis model

可解释性 计算机科学 认知 任务(项目管理) 人工智能 透视图(图形) 机器学习 相关性 人工神经网络 自然语言处理 心理学 几何学 数学 经济 神经科学 管理
作者
Haowen Yang,Tianlong Qi,Jin Li,Longjiang Guo,Meirui Ren,Lichen Zhang,Xiaoming Wang
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:250: 109156-109156 被引量:22
标识
DOI:10.1016/j.knosys.2022.109156
摘要

Cognitive diagnosis is a fundamental task to assist personalized learning in education, and aims to discover learners’ proficiency in knowledge concepts. Because cognitive diagnosis models play a very important role in predicting learner performance and recommending personalized learning resources such as exercises, course videos, and course audio, they have received great attention from researchers. However, existing cognitive diagnosis models mostly start from the interactive perspective of learners’ answers, ignoring the internal quantitative relationship between exercises and knowledge concepts. This study proposes a novel quantitative relationship-based explainable cognitive diagnosis model called QRCDM. First, learners’ concept proficiency was defined based on their answers to objective and subjective questions. Correlation hypotheses are then proposed, which include the explicit correlation between exercises and their corresponding knowledge concepts, as well as the implicit correlation between exercises and the non-inclusive concept. Finally, two contribution matrices of exercises and knowledge concepts through a neural network designed in this study are calculated based on the above hypotheses, which can predict the learner’s concept proficiency and answer score. To reduce the noisy data, the learners’ faults and guessing factors were also considered. In the experiments, the proposed QRCDM was compared with two classical models, DINA, FuzzyCDF and three latest state-of-the-art models, DeepCDM, NeuralCDM and RCD on five real datasets, and the most experimental results on the majority metrics show the effectiveness and interpretability of this work. • Novel cognitive diagnosis model that can express quantitative relationship. • The implicit relationship between exercises and knowledge concepts is excavated. • To verify the interpretability of the model, a support experiment was designed. • Retention degree experiment is designed to verify model’s interpretability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助兔农糖采纳,获得10
2秒前
Ava应助ZQ采纳,获得10
3秒前
欢喜的跳跳糖完成签到 ,获得积分10
6秒前
McbxM发布了新的文献求助10
6秒前
8秒前
小洲王先生完成签到,获得积分10
9秒前
研友_VZG7GZ应助尊敬的夏槐采纳,获得10
10秒前
10秒前
McbxM完成签到,获得积分10
12秒前
13秒前
13秒前
Tracy完成签到,获得积分10
15秒前
ZQ发布了新的文献求助10
18秒前
火星上的莫英完成签到 ,获得积分10
18秒前
19秒前
淡定的岱周完成签到 ,获得积分10
19秒前
bkagyin应助Lz采纳,获得10
19秒前
sherryginyz完成签到,获得积分10
19秒前
21秒前
ting发布了新的文献求助30
24秒前
yinying发布了新的文献求助10
25秒前
fxf发布了新的文献求助10
26秒前
Godzilla完成签到 ,获得积分10
31秒前
32秒前
32秒前
yinying完成签到,获得积分10
32秒前
wanci应助你好世界采纳,获得10
32秒前
Orange应助Lz采纳,获得10
34秒前
丘比特应助ting采纳,获得10
35秒前
踏实豪英完成签到,获得积分10
35秒前
兔农糖发布了新的文献求助10
36秒前
123完成签到 ,获得积分10
36秒前
笨笨芯发布了新的文献求助30
40秒前
小马甲应助xumou采纳,获得10
41秒前
爆米花应助玉汝于成采纳,获得10
42秒前
科研通AI5应助buciying采纳,获得10
42秒前
xul279完成签到,获得积分10
44秒前
leah完成签到 ,获得积分10
44秒前
善学以致用应助柯柯采纳,获得10
47秒前
mslln发布了新的文献求助10
48秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841977
求助须知:如何正确求助?哪些是违规求助? 3383977
关于积分的说明 10532118
捐赠科研通 3104189
什么是DOI,文献DOI怎么找? 1709550
邀请新用户注册赠送积分活动 823313
科研通“疑难数据库(出版商)”最低求助积分说明 773878