Development and validation of machine learning models for prediction of seizure outcome after pediatric epilepsy surgery

癫痫 一致性 医学 癫痫外科 逻辑回归 队列 单变量 磁共振成像 单变量分析 置信区间 回顾性队列研究 机器学习 人工智能 外科 多元分析 内科学 放射科 多元统计 计算机科学 精神科
作者
Omar Yossofzai,Aria Fallah,Cassia Maniquis,Shelly Wang,John Ragheb,Alexander G. Weil,Tristan Brunette‐Clément,Andrea Andrade,George M. Ibrahim,Nicholas Mitsakakis,Elysa Widjaja
出处
期刊:Epilepsia [Wiley]
卷期号:63 (8): 1956-1969 被引量:14
标识
DOI:10.1111/epi.17320
摘要

There is substantial variability in reported seizure outcome following pediatric epilepsy surgery, and lack of individualized predictive tools that could evaluate the probability of seizure freedom postsurgery. The aim of this study was to develop and validate a supervised machine learning (ML) model for predicting seizure freedom after pediatric epilepsy surgery.This is a multicenter retrospective study of children who underwent epilepsy surgery at five pediatric epilepsy centers in North America. Clinical information, diagnostic investigations, and surgical characteristics were collected, and used as features to predict seizure-free outcome 1 year after surgery. The dataset was split randomly into 80% training and 20% testing data. Thirty-five combinations of five feature sets with seven ML classifiers were assessed on the training cohort using 10-fold cross-validation for model development. The performance of the optimal combination of ML classifier and feature set was evaluated in the testing cohort, and compared with logistic regression, a classical statistical approach.Of the 801 patients included, 61.3% were seizure-free 1 year postsurgery. During model development, the best combination was XGBoost ML algorithm with five features from the univariate feature set, including number of antiseizure medications, magnetic resonance imaging lesion, age at seizure onset, video-electroencephalography concordance, and surgery type, with a mean area under the curve (AUC) of .73 (95% confidence interval [CI] = .69-.77). The combination of XGBoost and univariate feature set was then evaluated on the testing cohort and achieved an AUC of .74 (95% CI = .66-.82; sensitivity = .87, 95% CI = .81-.94; specificity = .58, 95% CI = .47-.71). The XGBoost model outperformed the logistic regression model (AUC = .72, 95% CI = .63-.80; sensitivity = .72, 95% CI = .63-.82; specificity = .66, 95% CI = .53-.77) in the testing cohort (p = .005).This study identified important features and validated an ML algorithm, XGBoost, for predicting the probability of seizure freedom after pediatric epilepsy surgery. Improved prognostication of epilepsy surgery is critical for presurgical counseling and will inform treatment decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
米糊完成签到,获得积分10
3秒前
嗨害害发布了新的文献求助10
3秒前
3秒前
QL发布了新的文献求助10
4秒前
动漫大师发布了新的文献求助10
4秒前
5秒前
无花果应助yeyongchang_hit采纳,获得10
5秒前
Ava发布了新的文献求助10
5秒前
Mr.Ren完成签到,获得积分10
6秒前
南风发布了新的文献求助10
6秒前
6秒前
耶耶耶完成签到 ,获得积分10
7秒前
Diamond完成签到,获得积分10
8秒前
9秒前
薯条炸成星完成签到,获得积分20
9秒前
NexusExplorer应助乔治哇采纳,获得10
9秒前
10秒前
传奇3应助小朵采纳,获得30
10秒前
科研通AI5应助聪慧夜柳采纳,获得10
11秒前
Lucas应助zjw采纳,获得10
11秒前
传奇3应助嗨害害采纳,获得10
12秒前
呼啦的菜菜完成签到 ,获得积分10
12秒前
张董琳完成签到,获得积分10
13秒前
13秒前
13秒前
15秒前
16秒前
16秒前
充电宝应助猪猪hero采纳,获得10
16秒前
lalala发布了新的文献求助20
17秒前
Akim应助合适板栗采纳,获得10
17秒前
18秒前
想人陪的以云完成签到,获得积分10
18秒前
enmnm发布了新的文献求助10
18秒前
FashionBoy应助英勇的电话采纳,获得10
18秒前
19秒前
杨凡发布了新的文献求助10
19秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Functional Polyimide Dielectrics: Structure, Properties, and Applications 450
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795026
求助须知:如何正确求助?哪些是违规求助? 3339955
关于积分的说明 10298247
捐赠科研通 3056550
什么是DOI,文献DOI怎么找? 1677052
邀请新用户注册赠送积分活动 805118
科研通“疑难数据库(出版商)”最低求助积分说明 762333