Continuous and simultaneous estimation of lower limb multi-joint angles from sEMG signals based on stacked convolutional and LSTM models

计算机科学 接头(建筑物) 卷积神经网络 外骨骼 欧拉角 模式识别(心理学) 人工智能 支持向量机 运动学 频域 动态时间归整 时域 核(代数) 步态 计算机视觉 数学 模拟 建筑工程 工程类 生理学 物理 几何学 经典力学 组合数学 生物
作者
Yanzheng Lu,Hong Wang,Bin Zhou,Chunfeng Wei,Shiqiang Xu
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:203: 117340-117340 被引量:54
标识
DOI:10.1016/j.eswa.2022.117340
摘要

The smooth and natural interaction between human and lower limb exoskeleton is important. However, one of the challenges is that obtaining the joint rotation angles in time and accurately is difficult. In this paper, we propose the stacked convolutional and long–short term memory networks (Conv-LSTM) to estimate the hip, knee, and ankle joint angles from sEMG signals in locomotion modes including walk, run, stair descent, stair ascent, stand-to-sit, sit-to-stand, and jump. The joint angles are calculated from the kinematic models using the Euler angle signals measured by IMUs. The sEMG and joint angles are segmented according to the gait cycles measured by footswitch signals. Time–frequency analysis of sEMG signals is carried out using continuous wavelet transform. The Conv-LSTM model can extract the spatiotemporal information from the input to establish the mapping from sEMG sequences to multi-joint angle sequences. The evaluation effects of coefficient of determination (R2), root mean squared error, and Dynamic Time Warping on estimation performance are compared. The time domain (TD) features of sEMG perform better on joint angle estimation than the frequency domain and time–frequency domain features (p<0.05). The Conv-LSTM model with TD features as input outperforms the BP and state-of-the-art machine learning algorithms (kernel ridge, random forest, and support vector regression) on multi-joint angle estimation (R2: 0.9334, 0.9110, 0.9236, 0.9238, 0.8999, 0.9430, 0.9351, p<0.05). The estimation results are simulated in V-REP for exoskeleton control.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘66完成签到,获得积分10
刚刚
Loki完成签到,获得积分10
刚刚
打打应助MiLi采纳,获得10
刚刚
开放诗柳发布了新的文献求助10
刚刚
欧大大完成签到,获得积分10
刚刚
hyt发布了新的文献求助10
1秒前
1秒前
敏感的楷瑞完成签到,获得积分10
1秒前
1秒前
1秒前
昵称被注册完了完成签到,获得积分10
2秒前
zyj完成签到 ,获得积分10
2秒前
Yang完成签到,获得积分10
2秒前
2秒前
涟漪完成签到,获得积分10
3秒前
4秒前
zzz完成签到,获得积分10
4秒前
令狐文博发布了新的文献求助10
4秒前
优雅的弼完成签到 ,获得积分10
4秒前
科研黑洞完成签到,获得积分10
5秒前
hh完成签到,获得积分10
6秒前
xiaoxiao完成签到,获得积分10
6秒前
pangpang完成签到,获得积分10
6秒前
6秒前
6秒前
TearMarks完成签到 ,获得积分10
6秒前
炫迈发布了新的文献求助30
7秒前
自信的涛发布了新的文献求助20
7秒前
9202211125完成签到,获得积分10
7秒前
英俊的铭应助yang采纳,获得10
7秒前
wanci应助阿离采纳,获得10
8秒前
科研黑洞发布了新的文献求助10
8秒前
yu完成签到,获得积分10
8秒前
科目三应助一鸣大人采纳,获得10
8秒前
8秒前
hahaha完成签到,获得积分10
8秒前
doctor_loong发布了新的文献求助10
9秒前
1680Y完成签到,获得积分10
9秒前
9秒前
10秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792815
求助须知:如何正确求助?哪些是违规求助? 3337271
关于积分的说明 10284330
捐赠科研通 3054023
什么是DOI,文献DOI怎么找? 1675755
邀请新用户注册赠送积分活动 803778
科研通“疑难数据库(出版商)”最低求助积分说明 761534