期刊:IGI Global eBooks [IGI Global] 日期:2011-01-18被引量:1
标识
DOI:10.4018/9781591401766.ch011
摘要
This chapter presents a combined ARIMA and neural network approach for time series forecasting. The model contains three steps: (1) fitting a linear ARIMA model to the time series under study, (2) building a neural network model based on the residuals from the ARIMA model, and (3) combine the ARIMA prediction and the neural network result to form the final forecast. By combining different models, we aim to take advantage of the unique modeling capability of each individual model and improve forecasting performance dramatically. The effectiveness of the combining approach is demonstrated and discussed with three applications.Request access from your librarian to read this chapter's full text.