GAN-Based LiDAR Translation between Sunny and Adverse Weather for Autonomous Driving and Driving Simulation

激光雷达 计算机科学 恶劣天气 深度学习 翻译(生物学) 集合(抽象数据类型) 人工智能 钥匙(锁) 图像翻译 计算机视觉 图像(数学) 机器学习 遥感 气象学 计算机安全 地质学 信使核糖核酸 程序设计语言 物理 基因 化学 生物化学
作者
Jinho Lee,Daiki Shiotsuka,Toshiaki Nishimori,Kenta Nakao,Shunsuke Kamijo
出处
期刊:Sensors [MDPI AG]
卷期号:22 (14): 5287-5287 被引量:30
标识
DOI:10.3390/s22145287
摘要

Autonomous driving requires robust and highly accurate perception technologies. Various deep learning algorithms based on only image processing satisfy this requirement, but few such algorithms are based on LiDAR. However, images are only one part of the perceptible sensors in an autonomous driving vehicle; LiDAR is also essential for the recognition of driving environments. The main reason why there exist few deep learning algorithms based on LiDAR is a lack of data. Recent translation technology using generative adversarial networks (GANs) has been proposed to deal with this problem. However, these technologies focus on only image-to-image translation, although a lack of data occurs more often with LiDAR than with images. LiDAR translation technology is required not only for data augmentation, but also for driving simulation, which allows algorithms to practice driving as if they were commanding a real vehicle, before doing so in the real world. In other words, driving simulation is a key technology for evaluating and verifying algorithms which are practically applied to vehicles. In this paper, we propose a GAN-based LiDAR translation algorithm for autonomous driving and driving simulation. It is the first LiDAR translation approach that can deal with various types of weather that are based on an empirical approach. We tested the proposed method on the JARI data set, which was collected under various adverse weather scenarios with diverse precipitation and visible distance settings. The proposed method was also applied to the real-world Spain data set. Our experimental results demonstrate that the proposed method can generate realistic LiDAR data under adverse weather conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助李艺明采纳,获得10
刚刚
1秒前
今后应助malistm采纳,获得10
2秒前
CYF发布了新的文献求助10
2秒前
guo发布了新的文献求助10
2秒前
Sophia发布了新的文献求助10
3秒前
无情冰棍完成签到,获得积分10
3秒前
桐桐应助yygz0703采纳,获得10
4秒前
虎虎完成签到,获得积分10
5秒前
6秒前
寻道图强应助朱诗佳采纳,获得30
6秒前
7秒前
8秒前
科研通AI2S应助小陶采纳,获得10
8秒前
慕青应助zzsl采纳,获得10
9秒前
小帅完成签到,获得积分20
9秒前
9秒前
tudouning发布了新的文献求助10
12秒前
烟城完成签到,获得积分10
13秒前
14秒前
慕涔发布了新的文献求助10
14秒前
小帅发布了新的文献求助10
14秒前
15秒前
科研通AI6应助zhuangbaobao采纳,获得10
15秒前
15秒前
shusen发布了新的文献求助10
17秒前
17秒前
17秒前
17秒前
兰先生发布了新的文献求助10
18秒前
JackWang618完成签到,获得积分10
18秒前
19秒前
Lucas应助虎虎采纳,获得10
19秒前
悠悠应助kk7u采纳,获得10
20秒前
malistm发布了新的文献求助10
20秒前
20秒前
20秒前
cc完成签到,获得积分10
21秒前
21秒前
感冒灵发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Alloy Phase Diagrams 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5420180
求助须知:如何正确求助?哪些是违规求助? 4535297
关于积分的说明 14149461
捐赠科研通 4452280
什么是DOI,文献DOI怎么找? 2442103
邀请新用户注册赠送积分活动 1433615
关于科研通互助平台的介绍 1410869