A Brief Review of Computation Techniques for ECG Signal Analysis

QRS波群 计算机科学 人工智能 波形 信号(编程语言) 模式识别(心理学) 事件(粒子物理) 图形 心脏病学 医学 电信 雷达 物理 量子力学 程序设计语言 理论计算机科学
作者
Salleh Sh Hussain,Fuad Noman,Hadri Hussain,Chee-Ming Ting,Syed Rasul G. Syed bin Hamid,Hadrina Sh-Hussain,M. A. Jalil,Ahmad Zubaidi A.L.,Zuhaib Haider,Kuryati Kipli,J. Kavikumar,Kanad Ray,M. Shamim Kaiser,Mufti Mahmud,Jalil Ali
标识
DOI:10.1007/978-981-16-7597-3_18
摘要

Automatic detection of life-threatening cardiac arrhythmias has been a subject of interest for many decades. The automatic ECG signal analysis methods are mainly aiming for the interpretation of long-term ECG recordings. In fact, the experienced cardiologists perform the ECG analysis using a strip of ECG graph paper in an event-by-event manner. This manual interpretation becomes more difficult, time-consuming, and more tedious when dealing with long-term ECG recordings. Rather, an automatic computerized ECG analysis system will provide valuable assistance to the cardiologists to deliver fast or remote medical advice and diagnosis to the patient. However, achieving accurate automated arrhythmia diagnosis is a challenging task that has to account for all the ECG characteristics and processing steps. Detecting the P wave, QRS complex, and T wave is crucial to perform automatic analysis of EEG signals. Most of the research in this area uses the QRS complex as it is the easiest symbol to detect in the first stage. The QRS complex represents ventricular depolarization and consists of three consequences waves. However, the main challenge in any algorithm design is the large variation of QRS, P, and T waveform, leading to failure for each method. The QRS complex may only occupy R waves QR (no R), QR (no S), S (no Q), or RSR, depending on the ECG lead. Variations from the normal electrical patterns can indicate damage to the heart, and these variations are manifested as heart attack or heart disease. This paper will discuss the most recent and relevant methods related to each sub-stage, maintaining the related literature to the scope of ECG research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助77采纳,获得10
刚刚
勤劳的音响完成签到,获得积分10
刚刚
2秒前
jun完成签到 ,获得积分10
2秒前
闪闪雁兰完成签到,获得积分10
5秒前
ajiduo完成签到 ,获得积分10
6秒前
Lojong完成签到,获得积分10
6秒前
科研助手6应助ZY采纳,获得10
10秒前
iiillya完成签到,获得积分10
11秒前
RockRedfoo完成签到 ,获得积分10
15秒前
开心妙之完成签到 ,获得积分20
16秒前
17秒前
春天在这李完成签到,获得积分10
17秒前
李爱国应助MCS采纳,获得10
17秒前
wyu完成签到,获得积分10
19秒前
李某人完成签到,获得积分10
20秒前
shanbaibai完成签到,获得积分10
21秒前
五味杂陈完成签到,获得积分10
23秒前
23秒前
是真的完成签到 ,获得积分10
23秒前
脑洞疼应助CDH采纳,获得10
25秒前
28秒前
28秒前
FelixChen应助coolru采纳,获得10
28秒前
TengYu完成签到,获得积分10
29秒前
小易同学完成签到,获得积分10
29秒前
隐形曼青应助绿色植物采纳,获得10
30秒前
李爱笑完成签到,获得积分10
31秒前
开朗的钻石完成签到,获得积分10
31秒前
31秒前
精神是块骨头完成签到,获得积分10
32秒前
Uykizhao发布了新的文献求助30
33秒前
李爱笑发布了新的文献求助10
33秒前
37秒前
37秒前
YAN发布了新的文献求助10
37秒前
欣喜靖完成签到 ,获得积分10
41秒前
绿色植物发布了新的文献求助10
42秒前
西柚完成签到,获得积分10
43秒前
小李李完成签到 ,获得积分10
44秒前
高分求助中
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843913
求助须知:如何正确求助?哪些是违规求助? 3386217
关于积分的说明 10544489
捐赠科研通 3107034
什么是DOI,文献DOI怎么找? 1711392
邀请新用户注册赠送积分活动 824081
科研通“疑难数据库(出版商)”最低求助积分说明 774434