Screening Protein Prognostic Biomarkers for Stomach Adenocarcinoma Based on The Cancer Proteome Atlas

比例危险模型 肿瘤科 图谱 内科学 生存分析 医学 蛋白质组 腺癌 预测模型 癌症 计算生物学 生物信息学 总体生存率 生物 基因 蛋白质表达 生物化学
作者
Guoliang Zheng,Guo‐Jun Zhang,Yan Zhao,Zhichao Zheng
出处
期刊:Frontiers in Oncology [Frontiers Media]
卷期号:12 被引量:11
标识
DOI:10.3389/fonc.2022.901182
摘要

The objective was to construct a prognostic risk model of stomach adenocarcinoma (STAD) based on The Cancer Proteome Atlas (TCPA) to search for prognostic biomarkers. Protein data and clinical data on STAD were downloaded from the TCGA database, and differential expressions of proteins between carcinoma and para-carcinoma tissues were screened using the R package. The STAD data were randomly divided into a training set and a testing set in a 1:1 ratio. Subsequently, a linear prognostic risk model of proteins was constructed using Cox regression analysis based on training set data. Based on the scores of the prognostic model, sampled patients were categorized into two groups: a high-risk group and a low-risk group. Using the testing set and the full sample, ROC curves and K-M survival analysis were conducted to measure the predictive power of the prognostic model. The target genes of proteins in the prognostic model were predicted and their biological functions were analyzed. A total of 34 differentially expressed proteins were screened (19 up-regulated, 15 down-regulated). Based on 176 cases in the training set, a prognostic model consisting of three proteins (COLLAGEN VI, CD20, TIGAR) was constructed, with moderate prediction accuracy (AUC=0.719). As shown by the Kaplan-Meier and survival status charts, the overall survival rate of the low-risk group was better than that of the high-risk group. Moreover, a total of 48 target proteins were identified to have predictive power, and the level of proteins in hsa05200 (Pathways in cancer) was the highest. According to the results of the Univariate and multivariate COX analysis, tri-protein was identified as an independent prognostic factor. Therefore, the tri-protein prognostic risk model can be used to predict the likelihood of STAD and guide clinical treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助美满的天薇采纳,获得10
1秒前
去有风的地方完成签到 ,获得积分10
2秒前
6秒前
lss完成签到,获得积分10
7秒前
大个应助明亮无颜采纳,获得30
10秒前
去有风的地方关注了科研通微信公众号
10秒前
燕子完成签到,获得积分10
11秒前
12秒前
13秒前
14秒前
哆啦A梦完成签到,获得积分10
14秒前
晓晓晓发布了新的文献求助10
15秒前
朱大头发布了新的文献求助10
17秒前
19秒前
田様应助cdercder采纳,获得10
19秒前
无情的函发布了新的文献求助10
19秒前
666完成签到,获得积分10
20秒前
大陆完成签到,获得积分10
21秒前
huangshuishui关注了科研通微信公众号
21秒前
23秒前
科研通AI5应助Jonathan采纳,获得30
24秒前
美满的天薇完成签到,获得积分20
25秒前
monster发布了新的文献求助10
26秒前
心灵美千秋完成签到 ,获得积分10
27秒前
xx发布了新的文献求助10
28秒前
29秒前
懒123完成签到,获得积分10
30秒前
Ava应助monster采纳,获得10
31秒前
31秒前
Lazarus完成签到,获得积分10
32秒前
晓晓晓完成签到,获得积分10
34秒前
35秒前
学术神经发布了新的文献求助10
35秒前
36秒前
一只菜鸡发布了新的文献求助10
36秒前
倪瑞恒完成签到,获得积分10
37秒前
科研通AI5应助靓丽的发箍采纳,获得10
38秒前
Zarc完成签到,获得积分10
39秒前
huangshuishui发布了新的文献求助10
40秒前
权千万发布了新的文献求助10
40秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785749
求助须知:如何正确求助?哪些是违规求助? 3331166
关于积分的说明 10250472
捐赠科研通 3046615
什么是DOI,文献DOI怎么找? 1672143
邀请新用户注册赠送积分活动 801026
科研通“疑难数据库(出版商)”最低求助积分说明 759979