Point-of-care screening for heart failure with reduced ejection fraction using artificial intelligence during ECG-enabled stethoscope examination in London, UK: a prospective, observational, multicentre study

射血分数 听诊器 医学 观察研究 心力衰竭 心脏病学 内科学 重症监护医学 急诊医学 放射科
作者
Patrik Bächtiger,Camille F Petri,Francesca E Scott,Se Ri Park,Mihir Kelshiker,Harpreet K Sahemey,Bianca Dumea,Regine Alquero,Pritpal Padam,Isobel R Hatrick,Alfa Ali,Maria Isabel Ribeiro,Wing-See Cheung,Nina Bual,Bushra S. Rana,Matthew Shun‐Shin,Daniel B. Kramer,Alex Fragoyannis,Daniel Keene,Carla M. Plymen,Nicholas S. Peters
出处
期刊:The Lancet Digital Health [Elsevier BV]
卷期号:4 (2): e117-e125 被引量:80
标识
DOI:10.1016/s2589-7500(21)00256-9
摘要

BackgroundMost patients who have heart failure with a reduced ejection fraction, when left ventricular ejection fraction (LVEF) is 40% or lower, are diagnosed in hospital. This is despite previous presentations to primary care with symptoms. We aimed to test an artificial intelligence (AI) algorithm applied to a single-lead ECG, recorded during ECG-enabled stethoscope examination, to validate a potential point-of-care screening tool for LVEF of 40% or lower.MethodsWe conducted an observational, prospective, multicentre study of a convolutional neural network (known as AI-ECG) that was previously validated for the detection of reduced LVEF using 12-lead ECG as input. We used AI-ECG retrained to interpret single-lead ECG input alone. Patients (aged ≥18 years) attending for transthoracic echocardiogram in London (UK) were recruited. All participants had 15 s of supine, single-lead ECG recorded at the four standard anatomical positions for cardiac auscultation, plus one handheld position, using an ECG-enabled stethoscope. Transthoracic echocardiogram-derived percentage LVEF was used as ground truth. The primary outcome was performance of AI-ECG at classifying reduced LVEF (LVEF ≤40%), measured using metrics including the area under the receiver operating characteristic curve (AUROC), sensitivity, and specificity, with two-sided 95% CIs. The primary outcome was reported for each position individually and with an optimal combination of AI-ECG outputs (interval range 0–1) from two positions using a rule-based approach and several classification models. This study is registered with ClinicalTrials.gov, NCT04601415.FindingsBetween Feb 6 and May 27, 2021, we recruited 1050 patients (mean age 62 years [SD 17·4], 535 [51%] male, 432 [41%] non-White). 945 (90%) had an ejection fraction of at least 40%, and 105 (10%) had an ejection fraction of 40% or lower. Across all positions, ECGs were most frequently of adequate quality for AI-ECG interpretation at the pulmonary position (979 [93·3%] of 1050). Quality was lowest for the aortic position (846 [80·6%]). AI-ECG performed best at the pulmonary valve position (p=0·02), with an AUROC of 0·85 (95% CI 0·81–0·89), sensitivity of 84·8% (76·2–91·3), and specificity of 69·5% (66·4–72·6). Diagnostic odds ratios did not differ by age, sex, or non-White ethnicity. Taking the optimal combination of two positions (pulmonary and handheld positions), the rule-based approach resulted in an AUROC of 0·85 (0·81–0·89), sensitivity of 82·7% (72·7–90·2), and specificity of 79·9% (77·0–82·6). Using AI-ECG outputs from these two positions, a weighted logistic regression with l2 regularisation resulted in an AUROC of 0·91 (0·88–0·95), sensitivity of 91·9% (78·1–98·3), and specificity of 80·2% (75·5–84·3).InterpretationA deep learning system applied to single-lead ECGs acquired during a routine examination with an ECG-enabled stethoscope can detect LVEF of 40% or lower. These findings highlight the potential for inexpensive, non-invasive, workflow-adapted, point-of-care screening, for earlier diagnosis and prognostically beneficial treatment.FundingNHS Accelerated Access Collaborative, NHSX, and the National Institute for Health Research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
忧郁的猕猴桃完成签到,获得积分10
1秒前
大模型应助炒饭采纳,获得10
1秒前
吕布发布了新的文献求助10
1秒前
2秒前
肖耶啵发布了新的文献求助10
3秒前
啾啾发布了新的文献求助20
3秒前
飞扬完成签到,获得积分10
4秒前
fouding完成签到,获得积分10
4秒前
4秒前
哭泣嵩发布了新的文献求助10
5秒前
缥缈的飞扬完成签到,获得积分10
5秒前
5秒前
Bluestar完成签到,获得积分10
5秒前
6秒前
6秒前
高高完成签到,获得积分10
7秒前
哈哈完成签到,获得积分20
7秒前
肖耶啵发布了新的文献求助10
7秒前
杨小谦给杨小谦的求助进行了留言
8秒前
汉堡包应助cy采纳,获得10
8秒前
8秒前
科研助手6应助Meidina采纳,获得10
8秒前
10秒前
10秒前
Hello应助ye采纳,获得10
11秒前
阿虎发布了新的文献求助10
11秒前
哈尼完成签到,获得积分10
11秒前
LZYJJ发布了新的文献求助10
12秒前
桐桐应助快乐爱斯米采纳,获得10
12秒前
isfj发布了新的文献求助10
12秒前
rd关闭了rd文献求助
13秒前
13秒前
14秒前
rrfhl完成签到,获得积分10
14秒前
小白发布了新的文献求助10
15秒前
zzyyzz完成签到,获得积分10
16秒前
无奈完成签到,获得积分10
16秒前
一直发布了新的文献求助10
16秒前
16秒前
17秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3817624
求助须知:如何正确求助?哪些是违规求助? 3360911
关于积分的说明 10410260
捐赠科研通 3078989
什么是DOI,文献DOI怎么找? 1690938
邀请新用户注册赠送积分活动 814240
科研通“疑难数据库(出版商)”最低求助积分说明 768068