亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Point-of-care screening for heart failure with reduced ejection fraction using artificial intelligence during ECG-enabled stethoscope examination in London, UK: a prospective, observational, multicentre study

射血分数 听诊器 医学 观察研究 心力衰竭 心脏病学 内科学 重症监护医学 急诊医学 放射科
作者
Patrik Bächtiger,Camille F Petri,Francesca E Scott,Se Ri Park,Mihir Kelshiker,Harpreet K Sahemey,Bianca Dumea,Regine Alquero,Pritpal Padam,Isobel R Hatrick,Alfa Ali,Maria Isabel Ribeiro,Wing-See Cheung,Nina Bual,Bushra S. Rana,Matthew Shun‐Shin,Daniel B. Kramer,Alex Fragoyannis,Daniel Keene,Carla M. Plymen,Nicholas S. Peters
出处
期刊:The Lancet Digital Health [Elsevier BV]
卷期号:4 (2): e117-e125 被引量:80
标识
DOI:10.1016/s2589-7500(21)00256-9
摘要

BackgroundMost patients who have heart failure with a reduced ejection fraction, when left ventricular ejection fraction (LVEF) is 40% or lower, are diagnosed in hospital. This is despite previous presentations to primary care with symptoms. We aimed to test an artificial intelligence (AI) algorithm applied to a single-lead ECG, recorded during ECG-enabled stethoscope examination, to validate a potential point-of-care screening tool for LVEF of 40% or lower.MethodsWe conducted an observational, prospective, multicentre study of a convolutional neural network (known as AI-ECG) that was previously validated for the detection of reduced LVEF using 12-lead ECG as input. We used AI-ECG retrained to interpret single-lead ECG input alone. Patients (aged ≥18 years) attending for transthoracic echocardiogram in London (UK) were recruited. All participants had 15 s of supine, single-lead ECG recorded at the four standard anatomical positions for cardiac auscultation, plus one handheld position, using an ECG-enabled stethoscope. Transthoracic echocardiogram-derived percentage LVEF was used as ground truth. The primary outcome was performance of AI-ECG at classifying reduced LVEF (LVEF ≤40%), measured using metrics including the area under the receiver operating characteristic curve (AUROC), sensitivity, and specificity, with two-sided 95% CIs. The primary outcome was reported for each position individually and with an optimal combination of AI-ECG outputs (interval range 0–1) from two positions using a rule-based approach and several classification models. This study is registered with ClinicalTrials.gov, NCT04601415.FindingsBetween Feb 6 and May 27, 2021, we recruited 1050 patients (mean age 62 years [SD 17·4], 535 [51%] male, 432 [41%] non-White). 945 (90%) had an ejection fraction of at least 40%, and 105 (10%) had an ejection fraction of 40% or lower. Across all positions, ECGs were most frequently of adequate quality for AI-ECG interpretation at the pulmonary position (979 [93·3%] of 1050). Quality was lowest for the aortic position (846 [80·6%]). AI-ECG performed best at the pulmonary valve position (p=0·02), with an AUROC of 0·85 (95% CI 0·81–0·89), sensitivity of 84·8% (76·2–91·3), and specificity of 69·5% (66·4–72·6). Diagnostic odds ratios did not differ by age, sex, or non-White ethnicity. Taking the optimal combination of two positions (pulmonary and handheld positions), the rule-based approach resulted in an AUROC of 0·85 (0·81–0·89), sensitivity of 82·7% (72·7–90·2), and specificity of 79·9% (77·0–82·6). Using AI-ECG outputs from these two positions, a weighted logistic regression with l2 regularisation resulted in an AUROC of 0·91 (0·88–0·95), sensitivity of 91·9% (78·1–98·3), and specificity of 80·2% (75·5–84·3).InterpretationA deep learning system applied to single-lead ECGs acquired during a routine examination with an ECG-enabled stethoscope can detect LVEF of 40% or lower. These findings highlight the potential for inexpensive, non-invasive, workflow-adapted, point-of-care screening, for earlier diagnosis and prognostically beneficial treatment.FundingNHS Accelerated Access Collaborative, NHSX, and the National Institute for Health Research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
科研通AI5应助27小天使采纳,获得30
8秒前
11秒前
21秒前
oleskarabach发布了新的文献求助10
23秒前
26秒前
zch19970203发布了新的文献求助10
31秒前
31秒前
36秒前
cc应助科研通管家采纳,获得30
38秒前
科研通AI2S应助科研通管家采纳,获得10
38秒前
情怀应助科研通管家采纳,获得10
38秒前
27小天使发布了新的文献求助30
40秒前
43秒前
荣荣完成签到 ,获得积分10
47秒前
54秒前
1分钟前
Hello应助高大的蜡烛采纳,获得10
1分钟前
韶绍完成签到 ,获得积分10
1分钟前
上官若男应助zch19970203采纳,获得10
1分钟前
整齐白秋完成签到 ,获得积分10
1分钟前
1分钟前
刘萄完成签到,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
miki完成签到,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
CipherSage应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
3分钟前
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
血液中补体及巨噬细胞对大肠杆菌噬菌体PNJ1809-09活性的影响 500
Methodology for the Human Sciences 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Simulation of High-NA EUV Lithography 400
Metals, Minerals, and Society 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4316468
求助须知:如何正确求助?哪些是违规求助? 3834956
关于积分的说明 11994817
捐赠科研通 3475225
什么是DOI,文献DOI怎么找? 1906128
邀请新用户注册赠送积分活动 952303
科研通“疑难数据库(出版商)”最低求助积分说明 853804