An effective two-stage algorithm based on convolutional neural network for the bi-objective flexible job shop scheduling problem with machine breakdown

计算机科学 稳健性(进化) 卷积神经网络 作业车间调度 流水车间调度 调度(生产过程) 人工智能 人工神经网络 工作量 算法 数学优化 机器学习 数学 生物化学 化学 地铁列车时刻表 基因 操作系统
作者
Guohui Zhang,Xixi Lu,Xing Liu,Litao Zhang,Shiwen Wei,Wenqiang Zhang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:203: 117460-117460 被引量:64
标识
DOI:10.1016/j.eswa.2022.117460
摘要

• Dynamic flexible job shop scheduling problem with machine breakdown is studied. • A two-stage algorithm based on convolutional neural network is proposed. • The improved imperialist competition algorithm is proposed to generate schedules. • A predictive model is proposed to predict the robustness of scheduling. In the actual manufacturing process, the environment of the job shop is complex. There will be many kinds of uncertainties such as random job arrivals, machine breakdowns, order cancellations and other dynamic events. In this paper, an effective two-stage algorithm based on convolutional neural network is proposed to solve the flexible job shop scheduling problem (FJSP) with machine breakdown. A bi-objective dynamic flexible job shop scheduling problem (DFJSP) model with the objective of maximum completion time and robustness is established. In the two-stage algorithm, the first stage is to train the prediction model by convolutional neural network (CNN). The second stage is to predict the robustness of scheduling through the model trained in the first stage. First, an improved imperialist competition algorithm (ICA) is proposed to generate training data. Then, a predictive model constructed by CNN was proposed, and an alternative metric called RMn was developed to evaluate robustness. RMn evaluates that the float time has an effect on the robustness through the information of machine breakdown, workload and float time of the operation. The experimental results show that the proposed two-stage algorithm is effective for solving DFJSP, and RMn can evaluate the robustness of scheduling more quickly, efficiently and accurately.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
希望天下0贩的0应助liberty采纳,获得10
1秒前
飞天817发布了新的文献求助10
1秒前
fearlessji完成签到 ,获得积分10
2秒前
TJW发布了新的文献求助10
2秒前
bc举报蓝色的帐篷求助涉嫌违规
3秒前
柚子完成签到 ,获得积分10
3秒前
时倾完成签到,获得积分10
4秒前
默默的苠完成签到,获得积分10
4秒前
4秒前
lin应助yy采纳,获得10
5秒前
清茶旧友完成签到,获得积分10
5秒前
燕儿应助wyl采纳,获得10
5秒前
Rana完成签到 ,获得积分10
5秒前
努力科研的小吴完成签到,获得积分10
5秒前
Aries完成签到 ,获得积分10
6秒前
望仔完成签到 ,获得积分10
6秒前
6秒前
科研通AI5应助Disappear采纳,获得30
6秒前
Cynthia完成签到 ,获得积分10
6秒前
7秒前
7秒前
8秒前
8秒前
许钟一完成签到,获得积分10
8秒前
echasl73完成签到,获得积分10
8秒前
可爱的羽毛完成签到,获得积分10
8秒前
年轻契发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
9秒前
落林樾完成签到 ,获得积分10
10秒前
10秒前
秦川发布了新的文献求助30
10秒前
搜集达人应助corner采纳,获得10
10秒前
ding应助飞仔123采纳,获得10
10秒前
是真的宇航员啊完成签到,获得积分10
10秒前
啥文献找不到完成签到,获得积分10
11秒前
热心的紫寒完成签到,获得积分10
11秒前
yangtaotao完成签到,获得积分20
11秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792901
求助须知:如何正确求助?哪些是违规求助? 3337465
关于积分的说明 10285340
捐赠科研通 3054138
什么是DOI,文献DOI怎么找? 1675858
邀请新用户注册赠送积分活动 803795
科研通“疑难数据库(出版商)”最低求助积分说明 761561