Carbon Shell on Active Nanocatalyst for Stable Electrocatalysis

电催化剂 碳纤维 纳米材料基催化剂 催化作用 材料科学 纳米技术 纳米颗粒 化学工程 电化学 化学 电极 复合材料 复合数 有机化学 物理化学 工程类
作者
Ji Mun Yoo,Heejong Shin,Dong Young Chung,Yung‐Eun Sung
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:55 (9): 1278-1289 被引量:90
标识
DOI:10.1021/acs.accounts.1c00727
摘要

Electrocatalysis is a key process for renewable energy conversion and fuel production in future energy systems. Various nanostructures have been investigated to optimize the electrocatalytic activity and realize efficient energy use. However, the long-term stability of electrocatalysts is also crucial for the sustainable and reliable operation of energy devices. Nanocatalysts are degraded by various processes during electrocatalysis, which causes critical performance loss. Recent operando analyses have revealed the mechanisms of electrocatalyst failure, and specific structures have been identified as robust against degradation. Nevertheless, achieving both high activity and robust stability with the same nanostructure is challenging because the structure-property relationships that affect activity and stability are different. The optimization of electrocatalysis is often limited by a large trade-off between activity and stability in catalyst structures. Therefore, it is essential to introduce functional structural units into catalyst design to achieve electrochemical stability while preserving high activity.In this Account, we highlight the strategic use of carbon shells on catalyst surfaces to improve the stability during electrocatalysis. For this purpose, we cover three issues in the use of carbon-shell-encapsulated nanoparticles (CSENPs) as robust and active electrocatalysts: the origin of the improved stability, the identification of active sites, and synthetic routes. Carbon shells can shield catalyst surfaces from both (electro)chemical oxidation and physical agglomeration. By limiting the exposure of the catalyst surface to an oxidizing (electro)chemical environment, carbon shells can preserve the initial active site structure during electrocatalysis. In addition, by providing a physical barrier between nanoparticles, carbon shells can maintain the high surface area of CSENPs by reducing particle agglomeration during electrocatalysis. This barrier effect is also useful for constructing more active or durable structures by annealing without surface area loss. Compared to the clear stabilizing effect, however, the effect of the shell on active sites on the CSENP surface can be puzzling. Even when they are covered by a carbon shell that can block molecular adsorption on active sites, CSENP catalysts remain active and even exhibit unique catalytic behavior. Thus, we briefly cover recent efforts to identify major active sites on CSENPs using molecular probes. Furthermore, considering the membranelike role of the carbon shell, we suggest several remaining issues that should be resolved to obtain a fundamental understanding of CSENP design. Finally, we describe two synthetic approaches for the successful carbon shell encapsulation of nanoparticles: two-step and one-step syntheses. Both the postmortem coating of nanocatalysts (two-step) and the in situ formation via precursor ligands (one step) are shown to produce a durable carbon layer on nanocatalysts in a controlled manner. The strengths and limitations of each approach are also presented to promote the further investigation of advanced synthesis methods.The hybrid structure of CSENPs, that is, the active catalyst surface and the durable carbon shell, provides an interesting opportunity in electrocatalysis. However, our understanding of CSENPs is still highly limited, and further investigation is needed to answer fundamental questions regarding both active site identification and the mechanisms of stability improvement. Only when we start to comprehend the fundamental mechanisms underlying electrocatalysis on CSENPs will electrocatalysts be further improved for sustainable long-term device operation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明亮无颜发布了新的文献求助10
刚刚
浩然完成签到,获得积分10
刚刚
xia发布了新的文献求助10
刚刚
hhhh应助基莲采纳,获得20
刚刚
坚强的广山应助基莲采纳,获得10
刚刚
SOLOMON应助基莲采纳,获得10
刚刚
FashionBoy应助基莲采纳,获得10
刚刚
songlf23发布了新的文献求助10
4秒前
叶黄戍完成签到,获得积分10
4秒前
5秒前
情怀应助zjt采纳,获得10
6秒前
wanci应助ASSFree采纳,获得10
9秒前
9秒前
叶黄戍发布了新的文献求助50
10秒前
Tom希望发布了新的文献求助10
10秒前
氢磷发布了新的文献求助10
10秒前
领导范儿应助基莲采纳,获得10
11秒前
8R60d8应助基莲采纳,获得10
11秒前
Lucas应助基莲采纳,获得10
11秒前
lalala应助基莲采纳,获得10
11秒前
NexusExplorer应助基莲采纳,获得10
11秒前
糖醋排骨在逃应助基莲采纳,获得10
11秒前
Orange应助基莲采纳,获得10
11秒前
天天快乐应助基莲采纳,获得10
11秒前
酷波er应助基莲采纳,获得10
11秒前
小马甲应助基莲采纳,获得10
11秒前
林夕发布了新的文献求助10
13秒前
13秒前
安qaq完成签到,获得积分10
14秒前
Lucas应助李点点采纳,获得30
14秒前
开心榴莲大王完成签到 ,获得积分10
17秒前
zjt发布了新的文献求助10
17秒前
封似狮完成签到,获得积分10
18秒前
Jason发布了新的文献求助10
18秒前
落后的静枫完成签到 ,获得积分10
18秒前
安qaq发布了新的文献求助10
18秒前
情怀应助氢磷采纳,获得10
19秒前
秋子骞完成签到 ,获得积分10
20秒前
科目三应助天真念烟采纳,获得10
20秒前
科目三应助cheesejiang采纳,获得10
22秒前
高分求助中
请在求助之前详细阅读求助说明!!!! 20000
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 1000
The Three Stars Each: The Astrolabes and Related Texts 900
Yuwu Song, Biographical Dictionary of the People's Republic of China 800
Multifunctional Agriculture, A New Paradigm for European Agriculture and Rural Development 600
Bernd Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
A radiographic standard of reference for the growing knee 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2477068
求助须知:如何正确求助?哪些是违规求助? 2140916
关于积分的说明 5457057
捐赠科研通 1864250
什么是DOI,文献DOI怎么找? 926730
版权声明 562854
科研通“疑难数据库(出版商)”最低求助积分说明 495870