亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Carbon Shell on Active Nanocatalyst for Stable Electrocatalysis

电催化剂 碳纤维 纳米材料基催化剂 催化作用 材料科学 纳米技术 纳米颗粒 化学工程 电化学 化学 电极 复合材料 复合数 有机化学 物理化学 工程类
作者
Ji Mun Yoo,Heejong Shin,Dong Young Chung,Yung‐Eun Sung
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:55 (9): 1278-1289 被引量:185
标识
DOI:10.1021/acs.accounts.1c00727
摘要

ConspectusElectrocatalysis is a key process for renewable energy conversion and fuel production in future energy systems. Various nanostructures have been investigated to optimize the electrocatalytic activity and realize efficient energy use. However, the long-term stability of electrocatalysts is also crucial for the sustainable and reliable operation of energy devices. Nanocatalysts are degraded by various processes during electrocatalysis, which causes critical performance loss. Recent operando analyses have revealed the mechanisms of electrocatalyst failure, and specific structures have been identified as robust against degradation. Nevertheless, achieving both high activity and robust stability with the same nanostructure is challenging because the structure–property relationships that affect activity and stability are different. The optimization of electrocatalysis is often limited by a large trade-off between activity and stability in catalyst structures. Therefore, it is essential to introduce functional structural units into catalyst design to achieve electrochemical stability while preserving high activity.In this Account, we highlight the strategic use of carbon shells on catalyst surfaces to improve the stability during electrocatalysis. For this purpose, we cover three issues in the use of carbon-shell-encapsulated nanoparticles (CSENPs) as robust and active electrocatalysts: the origin of the improved stability, the identification of active sites, and synthetic routes. Carbon shells can shield catalyst surfaces from both (electro)chemical oxidation and physical agglomeration. By limiting the exposure of the catalyst surface to an oxidizing (electro)chemical environment, carbon shells can preserve the initial active site structure during electrocatalysis. In addition, by providing a physical barrier between nanoparticles, carbon shells can maintain the high surface area of CSENPs by reducing particle agglomeration during electrocatalysis. This barrier effect is also useful for constructing more active or durable structures by annealing without surface area loss. Compared to the clear stabilizing effect, however, the effect of the shell on active sites on the CSENP surface can be puzzling. Even when they are covered by a carbon shell that can block molecular adsorption on active sites, CSENP catalysts remain active and even exhibit unique catalytic behavior. Thus, we briefly cover recent efforts to identify major active sites on CSENPs using molecular probes. Furthermore, considering the membranelike role of the carbon shell, we suggest several remaining issues that should be resolved to obtain a fundamental understanding of CSENP design. Finally, we describe two synthetic approaches for the successful carbon shell encapsulation of nanoparticles: two-step and one-step syntheses. Both the postmortem coating of nanocatalysts (two-step) and the in situ formation via precursor ligands (one step) are shown to produce a durable carbon layer on nanocatalysts in a controlled manner. The strengths and limitations of each approach are also presented to promote the further investigation of advanced synthesis methods.The hybrid structure of CSENPs, that is, the active catalyst surface and the durable carbon shell, provides an interesting opportunity in electrocatalysis. However, our understanding of CSENPs is still highly limited, and further investigation is needed to answer fundamental questions regarding both active site identification and the mechanisms of stability improvement. Only when we start to comprehend the fundamental mechanisms underlying electrocatalysis on CSENPs will electrocatalysts be further improved for sustainable long-term device operation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助酷酷李可爱婕采纳,获得10
31秒前
1分钟前
1分钟前
DocChen发布了新的文献求助30
1分钟前
科研通AI5应助DocChen采纳,获得30
1分钟前
体贴皮带完成签到 ,获得积分10
1分钟前
fishss完成签到 ,获得积分10
1分钟前
GPTea举报Zpiao求助涉嫌违规
1分钟前
充电宝应助酷酷李可爱婕采纳,获得10
2分钟前
GPTea举报无无求助涉嫌违规
2分钟前
2分钟前
sunny完成签到 ,获得积分10
2分钟前
2分钟前
所所应助酷酷李可爱婕采纳,获得10
2分钟前
3分钟前
3分钟前
丘比特应助科研通管家采纳,获得10
3分钟前
Orange应助科研通管家采纳,获得10
3分钟前
4分钟前
ding应助酷酷李可爱婕采纳,获得10
4分钟前
KP发布了新的文献求助10
4分钟前
4分钟前
野性的易梦完成签到,获得积分20
4分钟前
4分钟前
4分钟前
4分钟前
万能图书馆应助mingjiang采纳,获得10
4分钟前
CipherSage应助酷酷李可爱婕采纳,获得10
5分钟前
5分钟前
酷波er应助科研通管家采纳,获得10
5分钟前
5分钟前
6分钟前
6分钟前
闪闪小小完成签到 ,获得积分10
6分钟前
ZaZa完成签到,获得积分10
7分钟前
7分钟前
8分钟前
巴拉巴拉完成签到,获得积分10
8分钟前
GPTea举报guangwow求助涉嫌违规
8分钟前
Owen应助研友_8Q0xyZ采纳,获得10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4729327
求助须知:如何正确求助?哪些是违规求助? 4085112
关于积分的说明 12633814
捐赠科研通 3792446
什么是DOI,文献DOI怎么找? 2094332
邀请新用户注册赠送积分活动 1120142
科研通“疑难数据库(出版商)”最低求助积分说明 996251