数学
正多边形
规范(哲学)
稳健性(进化)
凸组合
消散
卷积(计算机科学)
应用数学
变量(数学)
数学分析
凸优化
几何学
生物化学
化学
物理
机器学习
政治学
人工神经网络
计算机科学
法学
基因
热力学
作者
Qihang Sun,Bingquan Ji,Luming Zhang
标识
DOI:10.1016/j.camwa.2022.03.017
摘要
A variable time-step BDF2 scheme combined with the convex splitting strategy is proposed for the extended Fisher–Kolmogorov equation. Under the zero-stability condition r k : = τ k / τ k − 1 ≤ r user , ( r user < 4.864 ) , the suggested BDF2 scheme is shown to be uniquely solvable unconditionally, and preserve a discrete (modified) energy dissipation law. With the help of the recent discrete orthogonal convolution kernels technique, a concise L 2 norm error estimate for the convex splitting BDF2 scheme is established under the time-step ratios restriction 0 < r k ≤ r user . Numerical examples together with an adaptive time-stepping procedure are provided to demonstrate the robustness and effectiveness of the proposed methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI