Missing wind speed data reconstruction with improved context encoder network

计算机科学 背景(考古学) 风速 均方误差 数据丢失 涡轮机 风力发电 卷积神经网络 编码器 实时计算
作者
Bo Jing,Yan Pei,Zheng Qian,Anqi Wang,Siyu Zhu,Jiayi An
出处
期刊:Energy Reports [Elsevier BV]
卷期号:8: 3386-3394
标识
DOI:10.1016/j.egyr.2022.02.177
摘要

Missing wind speed data are mainly caused by harsh weather, wind turbine failures, and data transmission errors, which have adverse effects on the performance of wind power forecasting, power curve modeling, and energy assessment. Inspired by context encoders (CE), this paper proposes an improved context encoder network (ICE) for missing wind speed data reconstruction. An auto-encoder architecture with multiple one-dimensional convolutional layers is established for data generation. During network training, a joint loss function that includes reconstruction loss and adversarial loss is presented to obtain the stable and near-real reconstructed wind speed data. We add an Inception layer to the generator network to automatically select the appropriate convolutional filters and then recalibrate the channel relationship between feature maps via the squeeze-and-excitation network. At last, this paper uses wind speed data collected from an on-shore wind farm to verify the effectiveness of the proposed network. The results show that the mean absolute error (MAE) and root mean square error (RMSE) of the ICE network in different data missing rates are 0.019–0.021 and 0.021–0.025, respectively. It has the lowest reconstruction errors compared with six typical data reconstruction methods. • An improved Context Encoder network is proposed for missing wind speed data reconstruction. • An Inception layer optimized by the squeeze-and-excitation network is used for feature extraction. • A joint loss that includes reconstruction loss and adversarial loss is employed for network training.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助旅途之人采纳,获得10
1秒前
Cindy发布了新的文献求助10
1秒前
2秒前
完美世界应助卡皮巴拉yuan采纳,获得10
3秒前
Lucas应助yyh12138采纳,获得10
8秒前
小蘑菇应助缓慢又蓝采纳,获得20
8秒前
8秒前
111发布了新的文献求助10
9秒前
10秒前
旅途之人完成签到,获得积分10
11秒前
12秒前
13秒前
Mao完成签到,获得积分10
14秒前
脑洞疼应助山山而川采纳,获得10
15秒前
水灯霖发布了新的文献求助30
16秒前
Echo1128完成签到 ,获得积分10
16秒前
Accept2024发布了新的文献求助30
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
天天快乐应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
小二郎应助科研通管家采纳,获得10
17秒前
19秒前
安静的飞珍完成签到,获得积分10
21秒前
22秒前
24秒前
奋斗藏花发布了新的文献求助10
24秒前
川上富江发布了新的文献求助10
24秒前
科研通AI5应助111采纳,获得10
24秒前
飘逸的麦片完成签到,获得积分10
26秒前
27秒前
HPP123完成签到,获得积分10
28秒前
多情的青烟完成签到,获得积分20
29秒前
吉吉完成签到,获得积分10
29秒前
自然黄豆应助洁净之柔采纳,获得10
30秒前
31秒前
桐桐应助伶俐老头采纳,获得10
34秒前
36秒前
自然黄豆发布了新的文献求助10
37秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782187
求助须知:如何正确求助?哪些是违规求助? 3327590
关于积分的说明 10232533
捐赠科研通 3042546
什么是DOI,文献DOI怎么找? 1670040
邀请新用户注册赠送积分活动 799600
科研通“疑难数据库(出版商)”最低求助积分说明 758844