In situ electrochemical dehydrogenation of ultrathin Co(OH)2 nanosheets for enhanced hydrogen evolution

脱氢 过电位 催化作用 电化学 无机化学 化学 析氧 过渡金属 化学工程 材料科学 分解水 光催化 物理化学 电极 有机化学 工程类
作者
Qian Zhou,Qihang Bian,Liling Liao,Yu Fang,Dongyang Li,Dongsheng Tang,Haiqing Zhou
出处
期刊:Chinese Chemical Letters [Elsevier BV]
卷期号:34 (1): 107248-107248 被引量:24
标识
DOI:10.1016/j.cclet.2022.02.053
摘要

Transition metal hydroxides/oxyhydroxides have recently emerged as highly active electrocatalysts for oxygen evolution reaction in alkaline water electrolysis, while have not yet been widely investigated for hydrogen evolution electrocatalysts owing to their unfavorable H*-adsorption, making it difficult to construct an overall-water-splitting cell for hydrogen production. In this work, we proposed a straightforward and effective approach to develop an efficient in-plane heterostructured CoOOH/Co(OH)2 catalyst via in-situ electrochemical dehydrogenation method, in which the dehydrogenated –CoOOH and Co(OH)2 at the surface synergistically boost the hydrogen evolution reaction (HER) kinetics in base as confirmed by high-resolution transmission electron microscope, synchrotron X-ray absorption spectroscopy, and electron energy loss spectroscopy. Due to the in-situ dehydrogenation of ultrathin Co(OH)2 nanosheets, the catalytic activity of the CoOOH/Co(OH)2 heterostructures is progressively improved, which exhibit outstanding hydrogen-evolving activity in base requiring a low overpotential of 132 mV to afford 10 mA/cm2 with very fast reaction kinetics after 60 h dehydrogenation. The gradually improved catalytic performance for the CoOOH/Co(OH)2 is probably due to the enhanced H*-adsorption induced by the synergistic effect of heterostructures and better conductivity of CoOOH relative to electrically insulating Co(OH)2. This work will open the opportunity for a new family of transition metal hydroxides/oxyhydroxides as active HER catalysts, and also highlight the importance of using in situ techniques to construct precious metal-free efficient catalysts for alkaline hydrogen evolution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助乙二胺四乙酸采纳,获得10
刚刚
Belinda发布了新的文献求助10
1秒前
赘婿应助雪雪子哇采纳,获得10
2秒前
2秒前
3秒前
3秒前
茶荼发布了新的文献求助10
5秒前
6秒前
mia发布了新的文献求助10
8秒前
msli发布了新的文献求助10
9秒前
Orange应助茶荼采纳,获得10
9秒前
H..完成签到,获得积分20
10秒前
善学以致用应助zy采纳,获得10
12秒前
Jieh完成签到,获得积分10
12秒前
zizi完成签到,获得积分20
13秒前
14秒前
14秒前
Jasper应助zizi采纳,获得10
18秒前
刘佳发布了新的文献求助10
20秒前
21秒前
21秒前
22秒前
茶荼完成签到,获得积分10
26秒前
26秒前
木木三发布了新的文献求助10
27秒前
开朗的钻石完成签到,获得积分10
28秒前
粱老黑发布了新的文献求助10
28秒前
29秒前
30秒前
所所应助科研通管家采纳,获得10
30秒前
Micro_A应助科研通管家采纳,获得10
30秒前
小马甲应助科研通管家采纳,获得10
30秒前
Orange应助科研通管家采纳,获得10
31秒前
小二郎应助科研通管家采纳,获得10
31秒前
一一应助科研通管家采纳,获得10
31秒前
31秒前
星辰大海应助科研通管家采纳,获得10
31秒前
完美世界应助科研通管家采纳,获得10
31秒前
Lucas应助科研通管家采纳,获得10
31秒前
科研通AI5应助科研通管家采纳,获得10
31秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776783
求助须知:如何正确求助?哪些是违规求助? 3322227
关于积分的说明 10209307
捐赠科研通 3037454
什么是DOI,文献DOI怎么找? 1666696
邀请新用户注册赠送积分活动 797627
科研通“疑难数据库(出版商)”最低求助积分说明 757976