清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Expensive Multiobjective Optimization by Relation Learning and Prediction

符号 计算机科学 机器学习 人工智能 关系(数据库) 数学 数学记数法 算法 数据挖掘 域代数上的 离散数学 纯数学 算术
作者
Hao Hao,Aimin Zhou,Hong Qian,Hu Zhang
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:26 (5): 1157-1170 被引量:68
标识
DOI:10.1109/tevc.2022.3152582
摘要

Expensive multiobjective optimization problems pose great challenges to evolutionary algorithms due to their costly evaluation. Building cheap surrogate models to replace the expensive real models has been proved to be a practical way to reduce the number of costly evaluations. Supervised learning techniques from the community of machine learning have been widely applied to build either regressors, which approximate the fitness values of candidate solutions, or classifiers, which estimate the categories of candidate solutions. Considering the characteristics of the data produced in optimization, this article proposes a new surrogate model, called a relation model, for evolutionary multiobjective optimization. Instead of estimating the qualities of candidate solutions directly, the relation model tries to estimate the relationship between a pair of solutions $\langle \mathbf {x}, \mathbf {y}\rangle $ , i.e., $\mathbf {x}$ dominates $\mathbf {y}$ , $\mathbf {x}$ is dominated by $\mathbf {y}$ , or $\mathbf {x}$ is nondominated with $\mathbf {y}$ in the case of multiobjective optimization. To implement this idea, first a balanced training set is prepared, then a classifier is built based on the training data set to learn the relationship, and finally, the classifier with a voting-scoring strategy is applied to estimate the relationship between the candidate solutions and parent solutions. By this way, the promising candidate solutions are recognized and evaluated by the real models. The new approach is applied to three well-known benchmark suites and two real-world applications, and the experimental results suggest that the proposed method outperforms some state-of-the-art methods based on regression and classification models on the given instances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张西西完成签到 ,获得积分10
刚刚
我和你完成签到 ,获得积分10
7秒前
14秒前
23秒前
JLLi发布了新的文献求助10
28秒前
42秒前
博修发布了新的文献求助10
46秒前
孟寐以求完成签到 ,获得积分10
46秒前
个性仙人掌完成签到 ,获得积分10
49秒前
52秒前
JLLi完成签到,获得积分10
53秒前
深情安青应助博修采纳,获得10
54秒前
57秒前
jlwang发布了新的文献求助10
1分钟前
1分钟前
动漫大师发布了新的文献求助30
1分钟前
顺心凡之完成签到,获得积分10
1分钟前
1分钟前
博修发布了新的文献求助10
1分钟前
搜集达人应助阿娟儿采纳,获得10
2分钟前
2分钟前
平凡中的限量版完成签到,获得积分10
2分钟前
阿娟儿发布了新的文献求助10
2分钟前
2分钟前
li完成签到 ,获得积分10
2分钟前
yzhilson完成签到 ,获得积分10
2分钟前
温柔觅松完成签到 ,获得积分10
2分钟前
xybjt完成签到 ,获得积分10
2分钟前
隐形曼青应助阿娟儿采纳,获得10
2分钟前
浩气长存完成签到 ,获得积分10
3分钟前
零四零零柒贰完成签到 ,获得积分10
3分钟前
3分钟前
阿娟儿发布了新的文献求助10
3分钟前
lingling完成签到 ,获得积分10
3分钟前
韩医生口腔完成签到 ,获得积分10
3分钟前
Yang完成签到 ,获得积分10
3分钟前
JamesPei应助阿娟儿采纳,获得10
4分钟前
4分钟前
4分钟前
sci完成签到 ,获得积分10
4分钟前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Effect of deresuscitation management vs. usual care on ventilator-free days in patients with abdominal septic shock 200
Erectile dysfunction From bench to bedside 200
Advanced Introduction to Behavioral Law and Economics 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825038
求助须知:如何正确求助?哪些是违规求助? 3367346
关于积分的说明 10445271
捐赠科研通 3086738
什么是DOI,文献DOI怎么找? 1698238
邀请新用户注册赠送积分活动 816657
科研通“疑难数据库(出版商)”最低求助积分说明 769907