Modeling nutrient removal by membrane bioreactor at a sewage treatment plant using machine learning models

缺氧水域 总悬浮物 悬浮物 营养物 环境科学 环境工程 多层感知器 化学需氧量 总溶解固体 生化需氧量 污水处理 化学 制浆造纸工业 废水 人工神经网络 计算机科学 环境化学 机器学习 工程类 有机化学
作者
Muhammad Yaqub,Wontae Lee
出处
期刊:Journal of water process engineering [Elsevier BV]
卷期号:46: 102521-102521 被引量:45
标识
DOI:10.1016/j.jwpe.2021.102521
摘要

This study developed machine learning (ML) models to predict nutrient removal using an anaerobic-anoxic-oxic membrane bioreactor (A2O-MBR). An extreme gradient boosting (XGBoost) model was applied using a grid search strategy (Grid-XGBoost) to predict the removal of nutrients, including ammonium (NH4), total phosphorus (TP), and total nitrogen (TN). The models were validated against a commonly used multilayer perceptron (MLP) neural network. The input parameters were divided into operating conditions, including dissolved oxygen, oxidation-reduction potential, and mixed liquor suspended solids. These conditions were also partitioned based on influent characteristics such as NH4, TN, TP, total organic content, chemical oxygen demand, and suspended solids. A total of nine models were developed for each ML technique using the operating conditions and influent characteristics as separate datasets and combining them for each target nutrient. It was observed that using only operating conditions or influent characteristics as input parameters for XGBoost and MLP yielded poor results. Moreover, a significant improvement in the predictive efficacy of the model was observed when all parameters for the target nutrient removal predictions were considered. The prediction of NH4 by the XGBoost model had the highest R2 values of 0.763, 0.814, and 0.876 when the operating conditions, influent characteristics, and combined dataset were used as input parameters, respectively. Overall, the ensemble XGBoost model demonstrated better performance than the MLP model in all cases. However, the performance of both the models was found to be inadequate for predicting TN and TP removal in any scenario. The proposed XGBoost model is a reliable and robust ML technique for predicting NH4 removal, which may contribute to decision-making in advance to improve the efficacy of an A2O-MBR system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
叩叩发布了新的文献求助10
1秒前
子漠发布了新的文献求助10
1秒前
余味应助liuyan采纳,获得10
2秒前
Akim应助malenia采纳,获得10
3秒前
spark完成签到 ,获得积分10
4秒前
所所应助dara997采纳,获得10
4秒前
此时此刻完成签到 ,获得积分10
6秒前
7秒前
山东老铁发布了新的文献求助20
7秒前
9秒前
陈静怡完成签到 ,获得积分10
9秒前
bkagyin应助Ori采纳,获得10
10秒前
liuchuck完成签到 ,获得积分10
12秒前
13秒前
Thien应助cc采纳,获得10
14秒前
15秒前
我是老大应助yang采纳,获得10
16秒前
龙抬头完成签到,获得积分10
16秒前
HHHHH完成签到,获得积分10
16秒前
16秒前
18秒前
大个应助瓦猫采纳,获得10
18秒前
Hello应助小七采纳,获得10
18秒前
18秒前
19秒前
脑洞疼应助优美从菡采纳,获得10
19秒前
D1fficulty完成签到,获得积分10
21秒前
武琳捷发布了新的文献求助10
21秒前
天天飞人完成签到,获得积分10
21秒前
Ori发布了新的文献求助10
22秒前
机灵鬼完成签到,获得积分10
22秒前
大个应助萌萌许采纳,获得10
22秒前
22秒前
23秒前
Ruoru发布了新的文献求助10
23秒前
23秒前
26秒前
26秒前
猪猪hero发布了新的文献求助10
26秒前
weiwei04314完成签到,获得积分10
26秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793379
求助须知:如何正确求助?哪些是违规求助? 3338237
关于积分的说明 10289128
捐赠科研通 3054737
什么是DOI,文献DOI怎么找? 1676158
邀请新用户注册赠送积分活动 804208
科研通“疑难数据库(出版商)”最低求助积分说明 761760