限制等距性
正多边形
噪音(视频)
算法
财产(哲学)
等距(黎曼几何)
计算机科学
凸优化
基础(线性代数)
基本追求
数学优化
凸组合
数学
应用数学
压缩传感
人工智能
匹配追踪
纯数学
几何学
哲学
图像(数学)
认识论
作者
Bin Zhao,Pengbo Geng,Wengu Chen,Zhu Zeng
标识
DOI:10.1016/j.amc.2022.126923
摘要
In this paper, we propose a novel convex model to recover the sparse signal through the proposed model in the framework of restricted isometry property without the knowledge of the noise type of the measurement model. In addition, several reliable numerical experiments are given to show that the new model has better recovery performance for signals with different noise compared with classical methods such as basis pursuit and Dantzig selector.
科研通智能强力驱动
Strongly Powered by AbleSci AI