Deep multi-graph neural networks with attention fusion for recommendation

计算机科学 人工智能 人工神经网络 深层神经网络 机器学习 图形 理论计算机科学
作者
Yuzhi Song,Hailiang Ye,Ming Li,Feilong Cao
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:191: 116240-116240 被引量:41
标识
DOI:10.1016/j.eswa.2021.116240
摘要

Graph neural networks (GNNs), with their promising potential to learn effective graph representation, have been widely used for recommender systems, in which the given graph data contains abundant users, items, and their historical interaction information. How to obtain preferable latent representations for both users and items is one of the key issues for GNN-based recommendation. This paper develops a novel deep GNN model with multi-graph attention fusion, MAF-GNN. This framework constructs two feature graph attention modules and a multi-scale latent features module, to generate better user and item latent features from input information. Specifically, the dual-branch residual graph attention (DBRGA) module is presented to extract neighbors’ similar features from user and item graphs effectively and easily. Then multi-scale latent matrices are captured by applying non-linear transformations which are embedded to reduce the cost of dimension selection. Furthermore, a hybrid fusion graph attention (HFGA) module is designed to obtain valuable collaborative information from the user–item interaction graph, aiming to further refine the latent embedding of users and items. Finally, the whole MAF-GNN framework is optimized by a geometric factorized regularization loss. Extensive experiment results on both synthetic and real-world datasets illustrate that MAF-GNN can achieve better recommendation performance with a certain level of interpretability than some existing approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123发布了新的文献求助10
3秒前
4秒前
慕青应助hysmoment采纳,获得10
4秒前
dududu发布了新的文献求助10
4秒前
田育完成签到,获得积分10
7秒前
8秒前
金熙美发布了新的文献求助10
9秒前
学术趴菜完成签到,获得积分10
9秒前
山城小丸完成签到,获得积分10
11秒前
11秒前
Qumy应助金熙美采纳,获得10
15秒前
16秒前
17秒前
高高烙完成签到,获得积分10
19秒前
FashionBoy应助123采纳,获得10
19秒前
20秒前
21秒前
烟花应助CYY采纳,获得10
22秒前
小高同学发布了新的文献求助10
23秒前
24秒前
李天完成签到,获得积分10
25秒前
25秒前
兴奋的万声完成签到,获得积分10
26秒前
可耐的梦琪完成签到,获得积分10
39秒前
果粒橙完成签到 ,获得积分10
40秒前
亦雪发布了新的文献求助20
42秒前
n3pu030036应助小周碎碎念采纳,获得10
43秒前
45秒前
45秒前
彭于晏应助小高同学采纳,获得10
45秒前
充电宝应助科研通管家采纳,获得10
46秒前
科目三应助科研通管家采纳,获得10
46秒前
搜集达人应助liiiii采纳,获得10
46秒前
情怀应助科研通管家采纳,获得10
46秒前
科研通AI5应助科研通管家采纳,获得10
46秒前
46秒前
李爱国应助科研通管家采纳,获得10
46秒前
Xenia应助科研通管家采纳,获得10
46秒前
SciGPT应助科研通管家采纳,获得10
46秒前
汉堡包应助科研通管家采纳,获得10
46秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778363
求助须知:如何正确求助?哪些是违规求助? 3323989
关于积分的说明 10216917
捐赠科研通 3039279
什么是DOI,文献DOI怎么找? 1667934
邀请新用户注册赠送积分活动 798438
科研通“疑难数据库(出版商)”最低求助积分说明 758385