Designer matrices for intestinal stem cell and organoid culture

类有机物 细胞外基质 干细胞 细胞生物学 纤维连接蛋白 生物 细胞分化 多细胞生物 LGR5型 细胞 化学 癌症干细胞 生物化学 基因
作者
Nikolce Gjorevski,Norman Sachs,Andrea Manfrin,Sonja Giger,Maiia E. Bragina,Paloma Ordóñez‐Morán,Hans Clevers,Matthias P. Lütolf
出处
期刊:Nature [Nature Portfolio]
卷期号:539 (7630): 560-564 被引量:1222
标识
DOI:10.1038/nature20168
摘要

Epithelial organoids recapitulate multiple aspects of real organs, making them promising models of organ development, function and disease. However, the full potential of organoids in research and therapy has remained unrealized, owing to the poorly defined animal-derived matrices in which they are grown. Here we used modular synthetic hydrogel networks to define the key extracellular matrix (ECM) parameters that govern intestinal stem cell (ISC) expansion and organoid formation, and show that separate stages of the process require different mechanical environments and ECM components. In particular, fibronectin-based adhesion was sufficient for ISC survival and proliferation. High matrix stiffness significantly enhanced ISC expansion through a yes-associated protein 1 (YAP)-dependent mechanism. ISC differentiation and organoid formation, on the other hand, required a soft matrix and laminin-based adhesion. We used these insights to build a fully defined culture system for the expansion of mouse and human ISCs. We also produced mechanically dynamic matrices that were initially optimal for ISC expansion and subsequently permissive to differentiation and intestinal organoid formation, thus creating well-defined alternatives to animal-derived matrices for the culture of mouse and human stem-cell-derived organoids. Our approach overcomes multiple limitations of current organoid cultures and greatly expands their applicability in basic and clinical research. The principles presented here can be extended to identify designer matrices that are optimal for long-term culture of other types of stem cells and organoids.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
enchanted发布了新的文献求助10
1秒前
CipherSage应助Asofi采纳,获得10
2秒前
szj发布了新的文献求助10
2秒前
2233完成签到 ,获得积分10
2秒前
2秒前
浮游应助调皮的蓝天采纳,获得10
3秒前
蜗牛123完成签到,获得积分10
3秒前
刘MTY完成签到 ,获得积分10
4秒前
5秒前
Xinlei发布了新的文献求助10
9秒前
yuan关注了科研通微信公众号
10秒前
Dr. Chen完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
绝味大姨发布了新的文献求助10
11秒前
共享精神应助远方的大树采纳,获得10
12秒前
13秒前
14秒前
14秒前
小李完成签到,获得积分10
14秒前
luan完成签到,获得积分10
14秒前
褚幻香发布了新的文献求助30
15秒前
15秒前
jiangxxxx1发布了新的文献求助30
15秒前
小王完成签到,获得积分10
16秒前
llwxx完成签到,获得积分10
16秒前
盲盒完成签到,获得积分10
17秒前
沉静凡松发布了新的文献求助10
17秒前
17秒前
我是老大应助lizi采纳,获得20
17秒前
Dr. Chen发布了新的文献求助10
19秒前
哪里有人发布了新的文献求助10
19秒前
hsy发布了新的文献求助10
20秒前
22秒前
JingjingWang发布了新的文献求助10
22秒前
善学以致用应助hsy采纳,获得10
23秒前
Mu完成签到,获得积分10
23秒前
jiangxxxx1完成签到,获得积分20
24秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5196870
求助须知:如何正确求助?哪些是违规求助? 4378399
关于积分的说明 13636182
捐赠科研通 4233982
什么是DOI,文献DOI怎么找? 2322524
邀请新用户注册赠送积分活动 1320667
关于科研通互助平台的介绍 1271135