The genetic spectrum of familial hypercholesterolemia in the central south region of China

家族性高胆固醇血症 PCSK9 载脂蛋白B 遗传学 低密度脂蛋白受体 突变 人口 外显子 医学 生物 等位基因 内科学 基因 胆固醇 脂蛋白 环境卫生
作者
Rong Xiang,Liang‐Liang Fan,Minjie Lin,Jingjing Li,Xiangyu Shi,Jie‐Yuan Jin,Yu‐Xing Liu,Yaqin Chen,Kun Xia,Shui‐Ping Zhao
出处
期刊:Atherosclerosis [Elsevier BV]
卷期号:258: 84-88 被引量:24
标识
DOI:10.1016/j.atherosclerosis.2017.02.007
摘要

Background and aims Familial hypercholesterolemia (FH) is the most common and severe autosomal dominant lipid metabolism dysfunction, which causes xanthoma, atherosclerosis and coronary heart disease. Earlier studies showed that mutations in LDLR, APOB and PCSK9 cause FH. Although more than 75% of the population in Europe has been scrutinized for FH-causing mutations, the genetic diagnosis proportion among Chinese people remains very low (less than 0.5%). The aim of this study was to perform a survey and mutation detection among the Chinese population. Methods 219 FH patients from the central south region of China were enrolled. After extracting DNA from circulating lymphocytes, we used direct DNA sequencing to screen each exon of LDLR, APOB and PCSK9. All detected variants were predicted by Mutationtaster, Polyphen-2 and SIFT to assess their effects. Results In total, 43 mutations were identified from 158 FH patients. Among them, 11 novel mutations were found, including seven LDLR mutations, two APOB mutations and two PCSK9 mutations. Moreover, five common mutations in LDLR were detected. We geographically marked their distributions on the map of China. Conclusions The spectrum of FH-causing mutations in the Chinese population is refined and expanded. Along with future studies, our study provides the necessary data as the foundation for the characterization of the allele frequency distribution in the Chinese population. The identification of more LDLR, APOB and PCSK9 novel mutations may expand the spectrum of FH-causing mutations and contribute to the genetic diagnosis and counseling of FH patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
noii发布了新的文献求助10
1秒前
河豚完成签到,获得积分10
1秒前
YYDS发布了新的文献求助10
2秒前
Lucas应助简单平蓝采纳,获得10
4秒前
小星星bulingbuling完成签到,获得积分10
4秒前
万年wannian完成签到,获得积分10
4秒前
5秒前
5秒前
独特的豌豆完成签到,获得积分10
5秒前
跳跃凡桃完成签到 ,获得积分10
6秒前
a3979107完成签到,获得积分10
6秒前
6秒前
7秒前
当女遇到乔完成签到 ,获得积分10
7秒前
coolkid应助俏皮的惜灵采纳,获得10
8秒前
waive完成签到,获得积分10
8秒前
Gorge完成签到,获得积分10
8秒前
jade完成签到,获得积分10
8秒前
动听的谷秋完成签到 ,获得积分10
9秒前
自觉沛文完成签到,获得积分10
9秒前
9秒前
阿宅完成签到,获得积分10
9秒前
lxl1996完成签到,获得积分10
9秒前
淡然冬灵应助科研通管家采纳,获得30
10秒前
10秒前
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
思源应助科研通管家采纳,获得30
10秒前
天天快乐应助科研通管家采纳,获得10
10秒前
打打应助科研通管家采纳,获得30
11秒前
FashionBoy应助科研通管家采纳,获得10
11秒前
JYY发布了新的文献求助30
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
英姑应助科研通管家采纳,获得10
11秒前
Owen应助科研通管家采纳,获得10
11秒前
李健应助科研通管家采纳,获得10
11秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Handbook of Medicinal Chemistry: Principles and Practice 200
Interpretability and Explainability in AI Using Python 200
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834097
求助须知:如何正确求助?哪些是违规求助? 3376554
关于积分的说明 10493831
捐赠科研通 3096024
什么是DOI,文献DOI怎么找? 1704828
邀请新用户注册赠送积分活动 820115
科研通“疑难数据库(出版商)”最低求助积分说明 771868