Quantile Regression for Analyzing Heterogeneity in Ultra-High Dimension

协变量 分位数 分位数回归 数学 异方差 维数(图论) 差异(会计) 判别式 计算机科学 数学优化 计量经济学 人工智能 会计 业务 纯数学
作者
Lan Wang,Yichao Wu,Runze Li
标识
DOI:10.1080/01621459.2012.656014
摘要

Ultra-high dimensional data often display heterogeneity due to either heteroscedastic variance or other forms of non-location-scale covariate effects. To accommodate heterogeneity, we advocate a more general interpretation of sparsity, which assumes that only a small number of covariates influence the conditional distribution of the response variable, given all candidate covariates; however, the sets of relevant covariates may differ when we consider different segments of the conditional distribution. In this framework, we investigate the methodology and theory of nonconvex, penalized quantile regression in ultra-high dimension. The proposed approach has two distinctive features: (1) It enables us to explore the entire conditional distribution of the response variable, given the ultra-high-dimensional covariates, and provides a more realistic picture of the sparsity pattern; (2) it requires substantially weaker conditions compared with alternative methods in the literature; thus, it greatly alleviates the difficulty of model checking in the ultra-high dimension. In theoretic development, it is challenging to deal with both the nonsmooth loss function and the nonconvex penalty function in ultra-high-dimensional parameter space. We introduce a novel, sufficient optimality condition that relies on a convex differencing representation of the penalized loss function and the subdifferential calculus. Exploring this optimality condition enables us to establish the oracle property for sparse quantile regression in the ultra-high dimension under relaxed conditions. The proposed method greatly enhances existing tools for ultra-high-dimensional data analysis. Monte Carlo simulations demonstrate the usefulness of the proposed procedure. The real data example we analyzed demonstrates that the new approach reveals substantially more information as compared with alternative methods. This article has online supplementary material.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
余若翠完成签到,获得积分10
1秒前
犹豫的初丹完成签到,获得积分10
1秒前
不期而遇完成签到 ,获得积分10
2秒前
slow发布了新的文献求助10
2秒前
LK发布了新的文献求助10
2秒前
tt完成签到,获得积分10
2秒前
Pengcheng完成签到,获得积分10
2秒前
LFY完成签到 ,获得积分10
3秒前
睡到自然醒完成签到 ,获得积分10
4秒前
知性的雅彤完成签到,获得积分10
5秒前
6秒前
大鹏完成签到,获得积分10
6秒前
无花果应助好奇宝宝采纳,获得30
6秒前
6秒前
6秒前
7秒前
向秋关注了科研通微信公众号
8秒前
朝韵完成签到,获得积分10
8秒前
gomm完成签到,获得积分10
8秒前
淡淡从安完成签到 ,获得积分10
8秒前
秋辞完成签到,获得积分10
9秒前
元谷雪完成签到,获得积分10
9秒前
cxjie320完成签到,获得积分10
10秒前
CodeCraft应助我欲成粉绿采纳,获得10
10秒前
10秒前
风趣的绮菱完成签到,获得积分10
11秒前
11秒前
搞怪的白云完成签到 ,获得积分10
11秒前
chem-wang发布了新的文献求助20
11秒前
woxiangbiye发布了新的文献求助10
11秒前
大力翠阳发布了新的文献求助10
13秒前
好运常在完成签到,获得积分10
14秒前
14秒前
YY-Bubble完成签到,获得积分10
14秒前
14秒前
Ws完成签到,获得积分10
15秒前
平常莹芝完成签到,获得积分10
15秒前
无辜茗完成签到 ,获得积分10
16秒前
一见你就笑完成签到,获得积分10
16秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3840989
求助须知:如何正确求助?哪些是违规求助? 3383019
关于积分的说明 10527493
捐赠科研通 3102844
什么是DOI,文献DOI怎么找? 1709042
邀请新用户注册赠送积分活动 822900
科研通“疑难数据库(出版商)”最低求助积分说明 773655