吉布斯抽样
数学
统计
贝叶斯概率
逻辑回归
估计理论
贝叶斯估计量
潜变量
计量经济学
采样(信号处理)
数据挖掘
计算机科学
滤波器(信号处理)
计算机视觉
作者
Zhihui Fu,Jian Tao,Ningzhong Shi
标识
DOI:10.1080/00949650801966876
摘要
The Gibbs sampler has a great potential to be an efficient and versatile estimation procedure in item response theory. In this article, based on a data augmentation scheme using the Gibbs sampler, we propose a Bayesian procedure to estimate the multidimensional three-parameter logistic model. With the introduction of the two latent variables, the full conditional distributions are tractable, and consequently the Gibbs sampling is easy to implement. Finally, the technique is illustrated by using simulated and real data, respectively.
科研通智能强力驱动
Strongly Powered by AbleSci AI