Comparison of Support Vector Machine and Artificial Neural Network Systems for Drug/Nondrug Classification

支持向量机 人工智能 人工神经网络 模式识别(心理学) 计算机科学 机器学习 分子描述符 假阳性悖论 数量结构-活动关系
作者
Evgeny Byvatov,Uli Fechner,Jens Sadowski,Gisbert Schneider
出处
期刊:Journal of Chemical Information and Computer Sciences [American Chemical Society]
卷期号:43 (6): 1882-1889 被引量:541
标识
DOI:10.1021/ci0341161
摘要

Support vector machine (SVM) and artificial neural network (ANN) systems were applied to a drug/nondrug classification problem as an example of binary decision problems in early-phase virtual compound filtering and screening. The results indicate that solutions obtained by SVM training seem to be more robust with a smaller standard error compared to ANN training. Generally, the SVM classifier yielded slightly higher prediction accuracy than ANN, irrespective of the type of descriptors used for molecule encoding, the size of the training data sets, and the algorithm employed for neural network training. The performance was compared using various different descriptor sets and descriptor combinations based on the 120 standard Ghose-Crippen fragment descriptors, a wide range of 180 different properties and physicochemical descriptors from the Molecular Operating Environment (MOE) package, and 225 topological pharmacophore (CATS) descriptors. For the complete set of 525 descriptors cross-validated classification by SVM yielded 82% correct predictions (Matthews cc = 0.63), whereas ANN reached 80% correct predictions (Matthews cc = 0.58). Although SVM outperformed the ANN classifiers with regard to overall prediction accuracy, both methods were shown to complement each other, as the sets of true positives, false positives (overprediction), true negatives, and false negatives (underprediction) produced by the two classifiers were not identical. The theory of SVM and ANN training is briefly reviewed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
诚心的丹秋完成签到,获得积分10
刚刚
YaoHui发布了新的文献求助10
刚刚
Mars完成签到,获得积分20
1秒前
ren完成签到,获得积分10
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
meteorabob发布了新的文献求助10
3秒前
3秒前
3秒前
彭于晏应助爱睡觉的亮亮采纳,获得10
3秒前
3秒前
4秒前
4秒前
蒸制完成签到,获得积分20
6秒前
文继遥发布了新的文献求助10
6秒前
tachang完成签到,获得积分10
7秒前
王根基完成签到,获得积分10
7秒前
7秒前
7秒前
FishBoooooo发布了新的文献求助10
8秒前
林楠发布了新的文献求助10
8秒前
9秒前
嘟嘟嘟发布了新的文献求助10
9秒前
w9412完成签到,获得积分10
9秒前
小海绵完成签到,获得积分10
9秒前
caijiaqi完成签到,获得积分10
9秒前
10秒前
微笑的千雁完成签到,获得积分20
11秒前
12秒前
12秒前
曹先生完成签到,获得积分10
12秒前
14秒前
满意沧海发布了新的文献求助10
14秒前
小烦同学完成签到,获得积分10
14秒前
16秒前
完美世界应助林楠采纳,获得10
16秒前
dxm发布了新的文献求助10
16秒前
安详的万怨完成签到,获得积分10
17秒前
大模型应助许净采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4950612
求助须知:如何正确求助?哪些是违规求助? 4213421
关于积分的说明 13103932
捐赠科研通 3995252
什么是DOI,文献DOI怎么找? 2186825
邀请新用户注册赠送积分活动 1202080
关于科研通互助平台的介绍 1115359