马尔科夫蒙特卡洛
逆高斯分布
威布尔分布
统计
二元分析
比例危险模型
数学
计算机科学
指数函数
危害
计量经济学
蒙特卡罗方法
分布(数学)
数学分析
有机化学
化学
作者
David D. Hanagal,Alok D. Dabade
标识
DOI:10.1080/03610926.2011.638428
摘要
Shared frailty models are often used to model heterogeneity in survival analysis. The most common shared frailty model is a model in which hazard function is a product of random factor (frailty) and baseline hazard function which is common to all individuals. There are certain assumptions about the baseline distribution and distribution of frailty. In this article, we consider inverse Gaussian distribution as frailty distribution and three different baseline distributions namely, Weibull, generalized exponential, and exponential power distribution. With these three baseline distributions, we propose three different inverse Gaussian shared frailty models. To estimate the parameters involved in these models we adopt Markov Chain Monte Carlo (MCMC) approach. We present a simulation study to compare the true values of the parameters with the estimated values. Also, we apply these three models to a real life bivariate survival data set of McGilchrist and Aisbett (1991 McGilchrist , C. A. , Aisbett , C. W. ( 1991 ). Regression with frailty in survival analysis . Biometrics 47 : 461 – 466 .[Crossref], [PubMed], [Web of Science ®] , [Google Scholar]) related to kidney infection and a better model is suggested for the data.
科研通智能强力驱动
Strongly Powered by AbleSci AI