Clinical COPD phenotypes: a novel approach using principal component and cluster analyses

医学 慢性阻塞性肺病 四分位间距 内科学 阻塞性肺病 队列 医院焦虑抑郁量表 物理疗法 焦虑 精神科
作者
Pierre–Régis Burgel,J.-L. Paillasseur,D. Caillaud,Isabelle Tillie‐Leblond,Pascal Chanez,R. Escamilla,I. Court-Fortuné,T. Pérez,Philippe Carré,Nicolás Roche
出处
期刊:The European respiratory journal [European Respiratory Society]
卷期号:36 (3): 531-539 被引量:337
标识
DOI:10.1183/09031936.00175109
摘要

Classification of chronic obstructive pulmonary disease (COPD) is usually based on the severity of airflow limitation, which may not reflect phenotypic heterogeneity. Here, we sought to identify COPD phenotypes using multiple clinical variables. COPD subjects recruited in a French multicentre cohort were characterised using a standardised process. Principal component analysis (PCA) was performed using eight variables selected for their relevance to COPD: age, cumulative smoking, forced expiratory volume in 1 s (FEV(1)) (% predicted), body mass index, exacerbations, dyspnoea (modified Medical Research Council scale), health status (St George's Respiratory Questionnaire) and depressive symptoms (hospital anxiety and depression scale). Patient classification was performed using cluster analysis based on PCA-transformed data. 322 COPD subjects were analysed: 77% were male; median (interquartile range) age was 65.0 (58.0-73.0) yrs; FEV(1) was 48.9 (34.1-66.3)% pred; and 21, 135, 107 and 59 subjects were classified in Global Initiative for Chronic Obstructive Lung Disease (GOLD) stages 1, 2, 3 and 4, respectively. PCA showed that three independent components accounted for 61% of variance. PCA-based cluster analysis resulted in the classification of subjects into four clinical phenotypes that could not be identified using GOLD classification. Importantly, subjects with comparable airflow limitation (FEV(1)) belonged to different phenotypes and had marked differences in age, symptoms, comorbidities and predicted mortality. These analyses underscore the need for novel multidimensional COPD classification for improving patient care and quality of clinical trials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI5应助RAY采纳,获得10
刚刚
hanzhipad应助泰裤辣采纳,获得10
2秒前
小蘑菇应助豆子采纳,获得10
3秒前
kiko完成签到,获得积分20
4秒前
和谐的蜡烛完成签到,获得积分10
4秒前
Azhou应助巧可脆脆采纳,获得20
5秒前
CodeCraft应助坚强煜城采纳,获得10
6秒前
9秒前
9秒前
kiko发布了新的文献求助10
10秒前
丘比特应助机灵柚子采纳,获得10
11秒前
orixero应助枫竹采纳,获得10
12秒前
YY发布了新的文献求助10
13秒前
感动书竹发布了新的文献求助10
14秒前
14秒前
楚辞发布了新的文献求助10
16秒前
16秒前
1111完成签到,获得积分10
17秒前
18秒前
18秒前
19秒前
张靖超发布了新的文献求助20
21秒前
cTiyAmo完成签到,获得积分10
21秒前
HXX发布了新的文献求助10
22秒前
奋斗的青柏完成签到,获得积分20
22秒前
JamesPei应助Hou采纳,获得10
22秒前
明明发布了新的文献求助10
23秒前
狗狗明明发布了新的文献求助20
23秒前
Boren完成签到,获得积分10
24秒前
ding应助包容春天采纳,获得10
24秒前
张晓完成签到,获得积分10
25秒前
26秒前
帮主哥哥应助天真的千柔采纳,获得20
27秒前
18岁中二少年完成签到,获得积分10
28秒前
28秒前
zhangjianan发布了新的文献求助10
28秒前
HXX完成签到,获得积分20
29秒前
豆子发布了新的文献求助10
30秒前
30秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
非光滑分析与控制理论 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Routledge Handbook of Language and Intercultural Communication 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3826719
求助须知:如何正确求助?哪些是违规求助? 3369009
关于积分的说明 10453805
捐赠科研通 3088598
什么是DOI,文献DOI怎么找? 1699232
邀请新用户注册赠送积分活动 817281
科研通“疑难数据库(出版商)”最低求助积分说明 770157