Boosting the cycling stability of transition metal compounds-based supercapacitors

材料科学 超级电容器 过渡金属 功率密度 法拉第效率 纳米技术 电容 储能 电极 电化学 物理化学 热力学 功率(物理) 催化作用 生物化学 物理 化学
作者
Teng Wang,Haichao Chen,Feng Yu,Xin Zhao,Hongxia Wang
出处
期刊:Energy Storage Materials [Elsevier]
卷期号:16: 545-573 被引量:680
标识
DOI:10.1016/j.ensm.2018.09.007
摘要

As an important electrochemical energy storage system, supercapacitors (SCs) possess advantages of high power density, long cycling life and great safety to meet the requirements of particular applications. Current commercial SCs that are mainly based on activated carbon materials generally have low energy density. Development of alternative electrode materials with a high specific capacitance is critical to achieving a high energy density of SCs. In the past decades, transition metal compounds have been explored as promising electrode materials for SCs with high energy density by taking advantage of faradaic charge storage process of transition metal cations. Nevertheless, SCs with transition metal based electrode materials normally suffer sluggish electrochemical reaction kinetics and poor electron conductivity, which result in unsatisfactory cycling stability and rate capability. In this review, we focus on the analysis of recent research breakthroughs in the development of high electrochemical performance SCs using transition metal oxides/hydroxides, sulfides, selenides and phosphides. The majority of the devices demonstrated outstanding cycling lifetime of over 10,000 times and excellent capacity retention rate along with high energy density. A critical analysis of the factors that contribute to the electrochemical performance of these star-performing SCs such as material morphology, crystal structure, composition, interfacial properties and key chemical reactions are presented. This timely review sheds light on the most effective possible paths towards design and fabrication of high performance SCs using transition metal electrode materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wang发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
1秒前
狄百招完成签到,获得积分10
4秒前
香蕉觅云应助内向的惜芹采纳,获得10
4秒前
傢誠完成签到,获得积分10
4秒前
5秒前
哈基米德应助科研通管家采纳,获得20
6秒前
所所应助科研通管家采纳,获得10
6秒前
BowieHuang应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
changping应助Y1BOL采纳,获得10
6秒前
Jasper应助科研通管家采纳,获得30
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
6秒前
搜集达人应助科研通管家采纳,获得10
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
共享精神应助Aipoi1采纳,获得10
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
7秒前
尉迟希望应助科研通管家采纳,获得10
7秒前
BowieHuang应助科研通管家采纳,获得10
7秒前
汉堡包应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
8秒前
富兰克林完成签到,获得积分20
8秒前
飞翔的鸣应助超级如风采纳,获得20
8秒前
领导范儿应助SihanYin采纳,获得10
9秒前
傢誠发布了新的文献求助30
10秒前
543453发布了新的文献求助10
10秒前
12秒前
12秒前
14秒前
秀丽的犀牛完成签到,获得积分10
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5284682
求助须知:如何正确求助?哪些是违规求助? 4438037
关于积分的说明 13815869
捐赠科研通 4319097
什么是DOI,文献DOI怎么找? 2370840
邀请新用户注册赠送积分活动 1366188
关于科研通互助平台的介绍 1329678