Strain-Induced Metastable Phase Stabilization in Ga2O3 Thin Films

材料科学 亚稳态 外延 结晶学 相(物质) 薄膜 透射电子显微镜 化学物理 基质(水族馆) 晶体结构 离子 凝聚态物理 纳米技术 化学 图层(电子) 海洋学 物理 有机化学 地质学
作者
Yaobin Xu,Ji‐Hyeon Park,Zhenpeng Yao,Chris Wolverton,Manijeh Razeghi,Jinsong Wu,Vinayak P. Dravid
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:11 (5): 5536-5543 被引量:52
标识
DOI:10.1021/acsami.8b17731
摘要

It is well known that metastable and transient structures in bulk can be stabilized in thin films via epitaxial strain (heteroepitaxy) and appropriate growth conditions that are often far from equilibrium. However, the mechanism of heteroepitaxy, particularly how the nominally unstable or metastable phase gets stabilized, remains largely unclear. This is especially intriguing for thin-film Ga2O3, where multiple crystal phases may exist under varied growth conditions with spatial and dimensional constraints. Herein, the development and distribution of epitaxial strain at the Ga2O3/Al2O3 film-substrate interfaces is revealed down to the atomic resolution along different orientations, with an aberration-corrected scanning transmission electron microscope. Just a few layers of metastable α-Ga2O3 structure were found to accommodate the misfit strain in direct contact with the substrate. Following an epitaxial α-Ga2O3 structure of about couple unit cells, several layers (4-5) of transient phase appear as the intermediate structure to release the misfit strain. Subsequent to this transient crystal phase, the nominally unstable κ-Ga2O3 phase is stabilized as the major thin-film phase form. We show that the epitaxial strain is gracefully accommodated by rearrangement of the oxygen polyhedra. When the structure is under large compressive strain, Ga3+ ions occupy only the oxygen octahedral sites to form a dense structure. With gradual release of the compressive strain, more and more Ga3+ ions occupy the oxygen tetrahedral sites, leading to volumetric expansion and the phase transformation. The structure of the transition phase is identified by high-resolution electron microscopy observation, complemented by the density functional theory calculations. This study provides insights from the atomic scale and their implications for the design of functional thin-film materials using epitaxial engineering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柠檬完成签到 ,获得积分10
3秒前
yu完成签到 ,获得积分10
3秒前
4秒前
bkagyin应助小田采纳,获得10
5秒前
5秒前
5秒前
WSZXQ发布了新的文献求助30
6秒前
yangyang完成签到,获得积分10
6秒前
7秒前
10秒前
Krrr发布了新的文献求助10
11秒前
13秒前
liuuuuu发布了新的文献求助30
13秒前
enternow完成签到 ,获得积分10
14秒前
yang_keai完成签到,获得积分10
16秒前
abe发布了新的文献求助10
16秒前
17秒前
19秒前
Krrr完成签到,获得积分10
19秒前
20秒前
liuuuuu完成签到,获得积分10
20秒前
mzc发布了新的文献求助10
22秒前
英俊的铭应助科研通管家采纳,获得10
23秒前
Akim应助科研通管家采纳,获得10
23秒前
李爱国应助科研通管家采纳,获得10
23秒前
23秒前
英俊的铭应助WSZXQ采纳,获得10
24秒前
黄婷婷发布了新的文献求助10
24秒前
共享精神应助山山而川采纳,获得10
25秒前
执着期待完成签到 ,获得积分10
25秒前
zhongjr_hz完成签到,获得积分10
25秒前
程风破浪发布了新的文献求助10
26秒前
29秒前
29秒前
29秒前
JamesPei应助Sunday采纳,获得10
30秒前
加油呀完成签到,获得积分10
31秒前
Panda尧完成签到,获得积分10
31秒前
WSZXQ发布了新的文献求助10
36秒前
11112发布了新的文献求助10
36秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779780
求助须知:如何正确求助?哪些是违规求助? 3325232
关于积分的说明 10222026
捐赠科研通 3040376
什么是DOI,文献DOI怎么找? 1668788
邀请新用户注册赠送积分活动 798776
科研通“疑难数据库(出版商)”最低求助积分说明 758549