劈形算符
数学
吸引子
拉普拉斯算子
规范(哲学)
p-拉普拉斯算子
相空间
数学物理
维数之咒
类型(生物学)
组合数学
数学分析
摄动(天文学)
纯数学
欧米茄
物理
量子力学
统计
政治学
法学
边值问题
生态学
生物
摘要
This paper is concerned with a class of Kirchhoff models with time delay and perturbation of $p$-Laplacian type \[ u_{tt}(x,t) + \Delta^2 u(x,t) - \Delta_p u(x,t) - a_0 \Delta u_t(x,t) + a_1 u_t(x,t-\tau) + f(u(x,t)) = g(x), \] where $\Delta_p u = \operatorname{div}(|\nabla u|^{p-2} \nabla u)$ is the usual $p$-Laplacian operator. Many researchers have studied well-posedness and decay rates of energy for these equations without delay effects. But, there are not many studies on attractors for other delayed systems. Thus we establish the existence of global attractors and the finite dimensionality of the attractors by establishing some functionals which are related to the norm of the phase space to our problem.
科研通智能强力驱动
Strongly Powered by AbleSci AI