Preoperative prediction of lymphovascular invasion in invasive breast cancer with dynamic contrast‐enhanced‐MRI‐based radiomics

淋巴血管侵犯 医学 接收机工作特性 乳房磁振造影 乳腺癌 列线图 逻辑回归 无线电技术 队列 磁共振成像 放射科 Lasso(编程语言) 动态增强MRI 曼惠特尼U检验 核医学 肿瘤科 癌症 内科学 转移 乳腺摄影术 计算机科学 万维网
作者
Zhuangsheng Liu,Feng Bao,Changlin Li,Yehang Chen,Qinxian Chen,Xiaoping Li,Jianhua Guan,Xiangmeng Chen,Enming Cui,Ronggang Li,Zhi Li,Wansheng Long
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:50 (3): 847-857 被引量:67
标识
DOI:10.1002/jmri.26688
摘要

Background Lymphovascular invasion (LVI) status facilitates the selection of optimal therapeutic strategy for breast cancer patients, but in clinical practice LVI status is determined in pathological specimens after resection. Purpose To explore the use of dynamic contrast‐enhanced (DCE)‐magnetic resonance imaging (MRI)‐based radiomics for preoperative prediction of LVI in invasive breast cancer. Study Type Prospective. Population Ninety training cohort patients (22 LVI‐positive and 68 LVI‐negative) and 59 validation cohort patients (22 LVI‐positive and 37 LVI‐negative) were enrolled. Field Strength/Sequence 1.5 T and 3.0 T, T 1 ‐weighted DCE‐MRI. Assessment Axillary lymph node (ALN) status for each patient was evaluated based on MR images (defined as MRI ALN status), and DCE semiquantitative parameters of lesions were calculated. Radiomic features were extracted from the first postcontrast DCE‐MRI. A radiomics signature was constructed in the training cohort with 10‐fold cross‐validation. The independent risk factors for LVI were identified and prediction models for LVI were developed. Their prediction performances and clinical usefulness were evaluated in the validation cohort. Statistical Tests Mann–Whitney U ‐test, chi‐square test, kappa statistics, least absolute shrinkage and selection operator (LASSO) regression, logistic regression, receiver operating characteristic (ROC) analysis, DeLong test, and decision curve analysis (DCA). Results Two radiomic features were selected to construct the radiomics signature. MRI ALN status (odds ratio, 10.452; P < 0.001) and the radiomics signature (odds ratio, 2.895; P = 0.031) were identified as independent risk factors for LVI. The value of the area under the curve (AUC) for a model combining both (0.763) was higher than that for MRI ALN status alone (0.665; P = 0.029) and similar to that for the radiomics signature (0.752; P = 0.857). DCA showed that the combined model added more net benefit than either feature alone. Data Conclusion The DCE‐MRI‐based radiomics signature in combination with MRI ALN status was effective in predicting the LVI status of patients with invasive breast cancer before surgery. Level of Evidence: 1 Technical Efficacy Stage: 2 J. Magn. Reson. Imaging 2019;50:847–857.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助我必做出来采纳,获得50
刚刚
1秒前
随机起的名完成签到,获得积分10
1秒前
Owen应助努力的小狗屁采纳,获得10
2秒前
2秒前
vuig完成签到 ,获得积分10
2秒前
哈哈哈的一笑完成签到,获得积分10
2秒前
2秒前
Emma完成签到,获得积分10
2秒前
3秒前
3秒前
研友_VZG7GZ应助不吃香菜采纳,获得10
3秒前
huanger完成签到,获得积分10
3秒前
Tayzon完成签到 ,获得积分10
3秒前
我测你码完成签到,获得积分10
3秒前
超级宇宙二踢脚完成签到,获得积分10
4秒前
4秒前
5秒前
大气小新完成签到,获得积分10
5秒前
ILS完成签到 ,获得积分10
5秒前
Orange应助澜生采纳,获得10
6秒前
lin完成签到,获得积分10
7秒前
Ares发布了新的文献求助10
7秒前
7秒前
谭平完成签到 ,获得积分10
7秒前
8秒前
淡定紫菱完成签到,获得积分10
8秒前
所所应助HYH采纳,获得20
8秒前
8秒前
木香完成签到,获得积分10
9秒前
尘雾发布了新的文献求助10
10秒前
11秒前
高鑫完成签到 ,获得积分10
11秒前
英姑应助dd采纳,获得10
11秒前
Chan0501关注了科研通微信公众号
12秒前
12秒前
研友_LMNjkn发布了新的文献求助10
12秒前
tjunqi完成签到,获得积分10
13秒前
13秒前
科研通AI2S应助下课了吧采纳,获得10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794