Applying machine learning to accelerate new materials development

计算机科学
作者
Wei Wu,Qiang Sun
出处
期刊:Zhongguo kexue [Science China Press]
卷期号:48 (10): 107001-107001 被引量:9
标识
DOI:10.1360/sspma2018-00073
摘要

Materials are not only the foundation of the national economy, but also the carrier of high technology. It has become a research hotspot in the world to overcome the conventional methods and apply new methods to accelerate the development of new materials. Propelled by the great success in other fields, data-driven informatics methods begin to emerge as a new technique in material science. Machine learning, as a representative of data-driven methods, has received extensive attention in various fields. Machine learning is an interdisciplinary science that combines computer science, statistics, computational mathematics and engineering. In the field of materials science, machine learning methods show faster calculation speed and higher prediction accuracy compared with conventional theoretical computational simulations based on solving physical or chemical fundamental equations. Machine learning is an effective addition to the existing theoretical calculation methods and significantly increases the efficiency of materials computational simulation work. Furthermore, it also works for some systems or problems that the traditional theoretical calculation methods fail to solve. This approach could also enable targeted material design and development. This review would provide a brief overview on the fundamentals of machine learning, several typical algorithms in machine learning and the applications in materials science, and discuss the future challenges in this field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gaogaogao完成签到,获得积分10
刚刚
祁煦完成签到,获得积分10
1秒前
lzj001983完成签到,获得积分10
1秒前
miqiqiya发布了新的文献求助30
1秒前
现代山雁完成签到 ,获得积分10
2秒前
2秒前
2秒前
junjieLIU发布了新的文献求助10
3秒前
我是老大应助稳稳采纳,获得10
3秒前
活力复天发布了新的文献求助10
3秒前
hjyylab应助bai采纳,获得10
3秒前
cm完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
Carolin发布了新的文献求助10
4秒前
cdh1994完成签到,获得积分0
4秒前
txxm12发布了新的文献求助10
4秒前
灵巧的蝴蝶完成签到 ,获得积分10
4秒前
正丁基锂完成签到,获得积分10
6秒前
zhugao完成签到,获得积分10
7秒前
研究牛牛完成签到 ,获得积分10
7秒前
FashionBoy应助Enoch采纳,获得10
7秒前
7秒前
呐呐完成签到,获得积分10
7秒前
彭Prrrr完成签到,获得积分10
7秒前
ZhaoRongzhe完成签到 ,获得积分10
8秒前
北世发布了新的文献求助10
8秒前
龙猫抱枕发布了新的文献求助10
8秒前
小李完成签到,获得积分10
8秒前
CatOS完成签到,获得积分20
8秒前
xfyxxh完成签到,获得积分10
8秒前
李健的小迷弟应助鲸落采纳,获得10
9秒前
Kyrie完成签到,获得积分10
9秒前
缓慢的微笑完成签到 ,获得积分10
10秒前
iNk应助科研通管家采纳,获得10
10秒前
11秒前
CipherSage应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
高分求助中
Handbook of Diagnosis and Treatment of DSM-5-TR Personality Disorders 800
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830731
求助须知:如何正确求助?哪些是违规求助? 3373073
关于积分的说明 10477436
捐赠科研通 3093209
什么是DOI,文献DOI怎么找? 1702398
邀请新用户注册赠送积分活动 818982
科研通“疑难数据库(出版商)”最低求助积分说明 771173