Using Machine Learning to Assess Physician Competence: A Systematic Review

心理信息 能力(人力资源) 梅德林 医学教育 科克伦图书馆 专业 计算机科学 医学 心理干预 人工智能 心理学 家庭医学 护理部 荟萃分析 病理 法学 社会心理学 政治学
作者
Roger D. Dias,Avni Gupta,Steven Yule
出处
期刊:Academic Medicine [Ovid Technologies (Wolters Kluwer)]
卷期号:94 (3): 427-439 被引量:67
标识
DOI:10.1097/acm.0000000000002414
摘要

Purpose To identify the different machine learning (ML) techniques that have been applied to automate physician competence assessment and evaluate how these techniques can be used to assess different competence domains in several medical specialties. Method In May 2017, MEDLINE, EMBASE, PsycINFO, Web of Science, ACM Digital Library, IEEE Xplore Digital Library, PROSPERO, and Cochrane Database of Systematic Reviews were searched for articles published from inception to April 30, 2017. Studies were included if they applied at least one ML technique to assess medical students’, residents’, fellows’, or attending physicians’ competence. Information on sample size, participants, study setting and design, medical specialty, ML techniques, competence domains, outcomes, and methodological quality was extracted. MERSQI was used to evaluate quality, and a qualitative narrative synthesis of the medical specialties, ML techniques, and competence domains was conducted. Results Of 4,953 initial articles, 69 met inclusion criteria. General surgery (24; 34.8%) and radiology (15; 21.7%) were the most studied specialties; natural language processing (24; 34.8%), support vector machine (15; 21.7%), and hidden Markov models (14; 20.3%) were the ML techniques most often applied; and patient care (63; 91.3%) and medical knowledge (45; 65.2%) were the most assessed competence domains. Conclusions A growing number of studies have attempted to apply ML techniques to physician competence assessment. Although many studies have investigated the feasibility of certain techniques, more validation research is needed. The use of ML techniques may have the potential to integrate and analyze pragmatic information that could be used in real-time assessments and interventions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
资产和负债完成签到,获得积分10
刚刚
刚刚
刚刚
1秒前
昭荃发布了新的文献求助10
1秒前
bang发布了新的文献求助10
2秒前
柚柚发布了新的文献求助10
2秒前
BowieHuang应助团结友爱采纳,获得10
3秒前
凤飞发布了新的文献求助10
3秒前
茫然的最帅关注了科研通微信公众号
3秒前
4秒前
4秒前
hjabao完成签到,获得积分10
4秒前
4秒前
4秒前
透明人完成签到,获得积分10
4秒前
fanguojun完成签到,获得积分20
4秒前
量子星尘发布了新的文献求助10
4秒前
romio发布了新的文献求助10
4秒前
yilin发布了新的文献求助10
5秒前
yanghuiying发布了新的文献求助10
5秒前
Gideon完成签到,获得积分10
6秒前
shukq发布了新的文献求助10
7秒前
惠香香的完成签到,获得积分10
8秒前
张靖松发布了新的文献求助10
8秒前
fanguojun发布了新的文献求助30
8秒前
努力哥完成签到,获得积分10
8秒前
共享精神应助aub采纳,获得10
8秒前
明夕发布了新的文献求助10
8秒前
8秒前
慕青应助哈哈哈采纳,获得10
9秒前
shengch0234完成签到,获得积分10
10秒前
万能图书馆应助xu采纳,获得10
11秒前
Xhhaai应助新茶采纳,获得10
11秒前
燃烧的火柴完成签到,获得积分10
12秒前
KrisTina发布了新的文献求助10
13秒前
14秒前
科研通AI6.1应助燃烧的火柴采纳,获得100
15秒前
xiaoxiao完成签到 ,获得积分10
15秒前
无极微光应助ha采纳,获得20
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785064
求助须知:如何正确求助?哪些是违规求助? 5685309
关于积分的说明 15466430
捐赠科研通 4914115
什么是DOI,文献DOI怎么找? 2645093
邀请新用户注册赠送积分活动 1592886
关于科研通互助平台的介绍 1547281