已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

AI-powered landslide susceptibility assessment in Hong Kong

山崩 计算机科学 人工智能 逻辑回归 随机森林 卷积神经网络 对象(语法) 多边形(计算机图形学) 地质学 人工神经网络 地图学 机器学习 数据挖掘 地理 岩土工程 电信 帧(网络)
作者
Haojie Wang,Limin Zhang,Hongyu Luo,Jian He,Raymond Cheung
出处
期刊:Engineering Geology [Elsevier]
卷期号:288: 106103-106103 被引量:192
标识
DOI:10.1016/j.enggeo.2021.106103
摘要

Landslide susceptibility assessment is essential for regional landslide risk assessment and mitigation. Most past studies involved cell-based analysis that takes landslide incidents as geo-spatial points. Nevertheless, given that a landslide is a two-dimensional polygon on maps and a three-dimensional object in the real world, an object-wise assessment is more logical. Fusing with artificial intelligence (AI) techniques, this paper proposes a novel AI-powered object-based landslide susceptibility assessment method to address this issue. First, landslide and non-landslide objects are defined based on an optimal object size determined by statistics of historical landslides. Next, landslide and non-landslide samples are constructed by integrating geoenvironmental data layers derived from multi-source data. Subsequently, AI techniques are applied to learn susceptibility prediction based on the prepared samples. To illustrate the proposed method, a comprehensive case study of Hong Kong is conducted, in which six AI algorithms are evaluated including logistic regression (area under curve, AUC = 0.949), random forest (AUC = 0.951), LogitBoost (AUC = 0.958), convolutional neural network (CNN) (AUC = 0.966), bidirectional long short-term memory architecture of recurrent neural network (BiLSTM-RNN) (AUC = 0.966), and CNN-LSTM (AUC = 0.972), among which the BiLSTM-RNN and CNN-LSTM algorithms are applied in landslide susceptibility assessment for the first time. Results confirm that the proposed object-based method outperforms the traditional cell-based method significantly. Equally importantly, the case study produced the first set of AI-based territory-wide landslide susceptibility maps for Hong Kong. These maps can be used as a fundamental tool for quantifying natural terrain landslide risk and identifying susceptible zones where landslide mitigation measures may be needed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
sisi发布了新的文献求助10
1秒前
1秒前
judy发布了新的文献求助10
1秒前
2秒前
林林完成签到,获得积分10
3秒前
caidun完成签到,获得积分10
4秒前
8秒前
9秒前
11秒前
12秒前
半夏完成签到 ,获得积分10
13秒前
14秒前
Ava应助judy采纳,获得10
14秒前
zyw发布了新的文献求助10
15秒前
dirk完成签到 ,获得积分10
16秒前
诸葛平卉完成签到 ,获得积分10
17秒前
Hilda007应助浅笑采纳,获得10
17秒前
研小白发布了新的文献求助10
19秒前
酷波er应助刘艳阳采纳,获得10
19秒前
bkagyin应助Azlne采纳,获得10
21秒前
今后应助有点儿采纳,获得10
23秒前
24秒前
dagongren完成签到 ,获得积分10
26秒前
爆米花应助Stardust采纳,获得30
26秒前
科研通AI6.1应助chenyuns采纳,获得30
27秒前
汉堡包应助小新采纳,获得10
28秒前
云yu完成签到 ,获得积分10
29秒前
洵音完成签到 ,获得积分10
30秒前
31秒前
31秒前
31秒前
JamesPei应助研小白采纳,获得10
33秒前
34秒前
小烦完成签到 ,获得积分10
35秒前
37秒前
37秒前
科研通AI6.1应助明理的雁采纳,获得10
39秒前
40秒前
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5779281
求助须知:如何正确求助?哪些是违规求助? 5646668
关于积分的说明 15451607
捐赠科研通 4910636
什么是DOI,文献DOI怎么找? 2642806
邀请新用户注册赠送积分活动 1590481
关于科研通互助平台的介绍 1544838