CapillaryNet: An automated system to quantify skin capillary density and red blood cell velocity from handheld vital microscopy

毛细管作用 计算机科学 微循环 红细胞压积 移动设备 生物医学工程 卷积神经网络 显微术 血流 人工智能 计算机视觉 材料科学 医学 心脏病学 放射科 内科学 操作系统 复合材料 细胞生物学 生物
作者
Helmy M,Dykyy A,Truong Tt,Ferreira P,Jul E
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:127: 102287-102287 被引量:1
标识
DOI:10.1016/j.artmed.2022.102287
摘要

Capillaries are the smallest vessels in the body which are responsible for delivering oxygen and nutrients to surrounding cells. Various life-threatening diseases are known to alter the density of healthy capillaries and the flow velocity of erythrocytes within the capillaries. In previous studies, capillary density and flow velocity were manually assessed by trained specialists. However, manual analysis of a standard 20-s microvascular video requires 20 min on average and necessitates extensive training. Thus, manual analysis has been reported to hinder the application of microvascular microscopy in a clinical environment. To address this problem, this paper presents a fully automated state-of-the-art system to quantify skin nutritive capillary density and red blood cell velocity captured by handheld-based microscopy videos. The proposed method combines the speed of traditional computer vision algorithms with the accuracy of convolutional neural networks to enable clinical capillary analysis. The results show that the proposed system fully automates capillary detection with an accuracy exceeding that of trained analysts and measures several novel microvascular parameters that had eluded quantification thus far, namely, capillary hematocrit and intracapillary flow velocity heterogeneity. The proposed end-to-end system, named CapillaryNet, can detect capillaries at ~0.9 s per frame with ~93% accuracy. The system is currently used as a clinical research product in a larger e-health application to analyse capillary data captured from patients suffering from COVID-19, pancreatitis, and acute heart diseases. CapillaryNet narrows the gap between the analysis of microcirculation images in a clinical environment and state-of-the-art systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
tranphucthinh发布了新的文献求助10
1秒前
Jane完成签到,获得积分10
1秒前
淡淡菠萝完成签到 ,获得积分10
1秒前
hahaha完成签到,获得积分10
4秒前
logo发布了新的文献求助10
6秒前
yzx发布了新的文献求助10
6秒前
wy完成签到,获得积分10
6秒前
6秒前
wangyu完成签到,获得积分10
7秒前
南瓜小笨111111完成签到 ,获得积分10
7秒前
tranphucthinh完成签到,获得积分10
8秒前
梦璃完成签到 ,获得积分10
8秒前
guo完成签到,获得积分10
9秒前
求知的周完成签到,获得积分10
10秒前
yzj发布了新的文献求助10
11秒前
滕皓轩发布了新的文献求助50
13秒前
嘻嘻哈哈发布了新的文献求助60
13秒前
14秒前
勤奋的花卷完成签到 ,获得积分10
15秒前
LYB吕完成签到,获得积分10
15秒前
耶椰耶完成签到 ,获得积分10
15秒前
CDI和LIB完成签到,获得积分10
17秒前
打打应助里昂采纳,获得30
18秒前
pei发布了新的文献求助10
19秒前
传奇3应助迅速大山采纳,获得10
20秒前
老迟到的土豆完成签到 ,获得积分10
22秒前
22秒前
23秒前
liubo完成签到,获得积分10
25秒前
开朗的虔完成签到 ,获得积分10
25秒前
26秒前
追梦1998完成签到,获得积分10
28秒前
revew666完成签到,获得积分10
29秒前
俭朴的乐巧完成签到 ,获得积分10
29秒前
清脆如娆完成签到 ,获得积分10
31秒前
我不到啊完成签到,获得积分10
31秒前
33秒前
共享精神应助pei采纳,获得10
35秒前
looklei发布了新的文献求助10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5294096
求助须知:如何正确求助?哪些是违规求助? 4444039
关于积分的说明 13832022
捐赠科研通 4328044
什么是DOI,文献DOI怎么找? 2375902
邀请新用户注册赠送积分活动 1371202
关于科研通互助平台的介绍 1336276