Integrated framework for SOH estimation of lithium-ion batteries using multiphysics features

多物理 稳健性(进化) 健康状况 非线性系统 计算机科学 离群值 冗余(工程) 特征提取 人工智能 工程类 数据挖掘 机器学习 控制理论(社会学) 可靠性工程 电池(电) 有限元法 物理 基因 结构工程 量子力学 功率(物理) 化学 控制(管理) 生物化学
作者
Seho Son,Siheon Jeong,Eunji Kwak,Jun‐Hyeong Kim,Ki‐Yong Oh
出处
期刊:Energy [Elsevier]
卷期号:238: 121712-121712 被引量:113
标识
DOI:10.1016/j.energy.2021.121712
摘要

This study proposes a highly reliable, robust, and accurate integrated framework to estimate the state-of-health (SOH) of lithium-ion batteries (LIBs), focusing on feature extraction and manipulation. This framework comprises three phases: feature extraction, feature manipulation, and SOH estimation. First, multiphysics features are extracted from mechanical and electrochemical evolutionary responses as distinct health indicators (HIs) to account for the multiphysics degradation mechanisms. Second, these features are manipulated to eliminate outliers and noises. This phase is especially effective for impedance HIs, considering the high sensitivity of these HIs to minor environmental perturbations. Third, a multivariate Gaussian distribution theory estimates the SOH combined with a nonlinear quadratic kernel to account for nonlinear characteristics in degradation modes of LIBs. The estimated results under various environments verify that the multiphysics feature primarily increases accuracy, whereas the feature manipulation ensures reliability and robustness. However, both phases are complementary in securing the accuracy, reliability, and robustness of the framework. Although the lifespan of LIBs is estimated using the training set in the 5 % SOH range, the estimation errors of the proposed framework are less than 2.5 % in all test sets. Thus, the proposed method ensures its potential applicability in practical implementations of onboard battery management systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Azure完成签到 ,获得积分10
4秒前
Ava应助CDC采纳,获得10
4秒前
8秒前
凉月发布了新的文献求助10
9秒前
崔崔完成签到,获得积分10
10秒前
落水鎏情发布了新的文献求助10
12秒前
星辰大海应助落落采纳,获得10
15秒前
淡淡的寻凝完成签到 ,获得积分10
17秒前
共享精神应助科研通管家采纳,获得10
19秒前
斯文败类应助科研通管家采纳,获得10
19秒前
赘婿应助科研通管家采纳,获得10
19秒前
所所应助科研通管家采纳,获得10
19秒前
共享精神应助科研通管家采纳,获得10
19秒前
小蘑菇应助科研通管家采纳,获得30
19秒前
19秒前
19秒前
19秒前
19秒前
19秒前
20秒前
22秒前
xmxbonus发布了新的文献求助10
23秒前
雪白以冬完成签到 ,获得积分10
24秒前
夜航船完成签到,获得积分10
24秒前
25秒前
25秒前
忧虑的绮梅完成签到,获得积分10
25秒前
万能图书馆应助SCI采纳,获得10
27秒前
传奇3应助贺兰生羽采纳,获得10
30秒前
落落发布了新的文献求助10
30秒前
英俊的铭应助蒲云海采纳,获得10
30秒前
小蘑菇应助奋斗语柳采纳,获得10
31秒前
34秒前
36秒前
36秒前
NexusExplorer应助Li采纳,获得10
37秒前
MF完成签到 ,获得积分10
37秒前
37秒前
彭于晏应助zz采纳,获得10
38秒前
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563713
求助须知:如何正确求助?哪些是违规求助? 4648587
关于积分的说明 14685691
捐赠科研通 4590541
什么是DOI,文献DOI怎么找? 2518648
邀请新用户注册赠送积分活动 1491224
关于科研通互助平台的介绍 1462521