A Survey of Community Detection Approaches: From Statistical Modeling to Deep Learning

计算机科学 图形模型 领域(数学) 水准点(测量) 概率逻辑 数据科学 多样性(控制论) 任务(项目管理) 深度学习 人工智能 分类学(生物学) 代表(政治) 分拆(数论) 机器学习 数据挖掘 系统工程 工程类 组合数学 政治 数学 政治学 法学 纯数学 地理 大地测量学 生物 植物
作者
Di Jin,Zhizhi Yu,Pengfei Jiao,Shirui Pan,Dongxiao He,Jia Wu,Philip L. H. Yu,Weixiong Zhang
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:: 1-1 被引量:258
标识
DOI:10.1109/tkde.2021.3104155
摘要

Community detection, a fundamental task for network analysis, aims to partition a network into multiple sub-structures to help reveal their latent functions. Community detection has been extensively studied in and broadly applied to many real-world network problems. Classical approaches to community detection typically utilize probabilistic graphical models and adopt a variety of prior knowledge to infer community structures. As the problems that network methods try to solve and the network data to be analyzed become increasingly more sophisticated, new approaches have also been proposed and developed, particularly those that utilize deep learning and convert networked data into low dimensional representation. Despite all the recent advancement, there is still a lack of insightful understanding of the theoretical and methodological underpinning of community detection, which will be critically important for future development of the area of network analysis. In this paper, we develop and present a unified architecture of network community-finding methods to characterize the state-of-the-art of the field of community detection. Specifically, we provide a comprehensive review of the existing community detection methods and introduce a new taxonomy that divides the existing methods into two categories, namely probabilistic graphical model and deep learning. We then discuss in detail the main idea behind each method in the two categories. Furthermore, to promote future development of community detection, we release several benchmark datasets from several problem domains and highlight their applications to various network analysis tasks. We conclude with discussions of the challenges of the field and suggestions of possible directions for future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一一完成签到 ,获得积分10
2秒前
朴实浩宇发布了新的文献求助10
2秒前
2秒前
眼睛大的寄真完成签到,获得积分10
4秒前
我是老大应助123123采纳,获得10
4秒前
5秒前
5秒前
又声完成签到,获得积分10
6秒前
涙痕完成签到,获得积分10
6秒前
7秒前
浮游应助red采纳,获得30
7秒前
00发布了新的文献求助10
8秒前
9秒前
春风不语发布了新的文献求助10
9秒前
快乐尔蝶发布了新的文献求助10
10秒前
香豆素完成签到 ,获得积分10
10秒前
lcarus完成签到,获得积分10
10秒前
jiaming发布了新的文献求助10
10秒前
11秒前
miaowuuuuuuu完成签到 ,获得积分10
11秒前
12秒前
12秒前
淼淼完成签到 ,获得积分10
12秒前
12秒前
13秒前
保持微笑发布了新的文献求助10
13秒前
早安发布了新的文献求助10
14秒前
14秒前
yinchem完成签到,获得积分10
15秒前
云泥完成签到 ,获得积分10
15秒前
朴实浩宇完成签到,获得积分10
15秒前
Ffffa发布了新的文献求助10
16秒前
大宝剑2号完成签到 ,获得积分10
17秒前
杜天豪发布了新的文献求助10
17秒前
Koalas应助许星意采纳,获得20
17秒前
best发布了新的文献求助10
18秒前
所所应助涂乐采纳,获得30
18秒前
杜杨帆发布了新的文献求助10
18秒前
保持微笑完成签到,获得积分10
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5061100
求助须知:如何正确求助?哪些是违规求助? 4285190
关于积分的说明 13353705
捐赠科研通 4103033
什么是DOI,文献DOI怎么找? 2246417
邀请新用户注册赠送积分活动 1252107
关于科研通互助平台的介绍 1182937