Ensemble machine learning methods for spatio-temporal data analysis of plant and ratoon sugarcane

梯度升压 人工智能 机器学习 决策树 特征选择 Boosting(机器学习) 计算机科学 二元分类 集成学习 降维 数据挖掘 维数之咒 回归 随机森林 人工神经网络 支持向量机 模式识别(心理学) 数学 统计
作者
Sandeep Kumar Singla,Rahul Garg,Om Prakash Dubey
出处
期刊:Intelligent Data Analysis [IOS Press]
卷期号:25 (5): 1291-1322 被引量:1
标识
DOI:10.3233/ida-205302
摘要

Recent technological enhancements in the field of information technology and statistical techniques allowed the sophisticated and reliable analysis based on machine learning methods. A number of machine learning data analytical tools may be exploited for the classification and regression problems. These tools and techniques can be effectively used for the highly data-intensive operations such as agricultural and meteorological applications, bioinformatics and stock market analysis based on the daily prices of the market. Machine learning ensemble methods such as Decision Tree (C5.0), Classification and Regression (CART), Gradient Boosting Machine (GBM) and Random Forest (RF) has been investigated in the proposed work. The proposed work demonstrates that temporal variations in the spectral data and computational efficiency of machine learning methods may be effectively used for the discrimination of types of sugarcane. The discrimination has been considered as a binary classification problem to segregate ratoon from plantation sugarcane. Variable importance selection based on Mean Decrease in Accuracy (MDA) and Mean Decrease in Gini (MDG) have been used to create the appropriate dataset for the classification. The performance of the binary classification model based on RF is the best in all the possible combination of input images. Feature selection based on MDA and MDG measures of RF is also important for the dimensionality reduction. It has been observed that RF model performed best with 97% accuracy, whereas the performance of GBM method is the lowest. Binary classification based on the remotely sensed data can be effectively handled using random forest method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助jmy采纳,获得10
1秒前
superfatcat完成签到,获得积分10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得10
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
gexzygg应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
小周完成签到,获得积分20
3秒前
Dan发布了新的文献求助10
5秒前
小周发布了新的文献求助10
6秒前
6秒前
舒心的冷安完成签到,获得积分10
6秒前
zt永不重名完成签到,获得积分10
6秒前
6秒前
陆lulu发布了新的文献求助10
7秒前
阳光完成签到,获得积分10
9秒前
科研通AI5应助168采纳,获得10
9秒前
嘻嘻发布了新的文献求助10
9秒前
张晓倩发布了新的文献求助10
11秒前
桃子发布了新的文献求助10
11秒前
赘婿应助科研小白采纳,获得10
11秒前
大个应助叶文腾采纳,获得10
12秒前
Virtual应助sc采纳,获得20
12秒前
12秒前
量子星尘发布了新的文献求助10
15秒前
贵金属发布了新的文献求助10
16秒前
17秒前
Dan完成签到,获得积分10
17秒前
Cindy发布了新的文献求助10
18秒前
烟花应助坚果采纳,获得10
19秒前
可爱的函函应助落卿然采纳,获得10
20秒前
20秒前
虚幻的城发布了新的文献求助10
22秒前
CTY完成签到,获得积分20
23秒前
开朗的山彤应助谨慎醉易采纳,获得10
25秒前
桃子完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
Bulletin de la Societe Chimique de France 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4277132
求助须知:如何正确求助?哪些是违规求助? 3805919
关于积分的说明 11924820
捐赠科研通 3452594
什么是DOI,文献DOI怎么找? 1893584
邀请新用户注册赠送积分活动 943645
科研通“疑难数据库(出版商)”最低求助积分说明 847513