材料科学
光催化
氮化碳
MXenes公司
堆积
氮化物
电子转移
石墨氮化碳
化学工程
制氢
化学物理
载流子
氢
光电子学
纳米技术
光化学
催化作用
图层(电子)
化学
工程类
物理
有机化学
生物化学
核磁共振
作者
Hui Zeng,Zhenhua Li,Guangshe Li,Xiaoqiang Cui,Mingxing Jin,Tengfeng Xie,Lulu Liu,Mengpei Jiang,Xia Zhong,Yaowen Zhang,He Zhang,Kaikai Ba,Zekun Yan,Ying Wang,Shuyan Song,Keke Huang,Shouhua Feng
标识
DOI:10.1002/aenm.202102765
摘要
Abstract Charge separation and transfer are central issues dominating the underlying energy conversion mechanisms of photosynthetic systems. Here, inspired by nature, a multi‐interfacial engineering strategy for constructing a strongly coupled interactive transmission network for stable and efficient photocatalytic hydrogen production is proposed. A multivariate all‐solid‐state Z‐scheme with intimate electron interactions is formed through strong bridging bonds due to Ti orbit modulation and stacking hybridization between hybrids. The electron couple structure realizes an efficient carrier directional separation and transfer, enabling the charge separation efficiency to be enhanced dramatically by 7.2 times. Furthermore, the resulting material provides a highly stable photocatalytic hydrogen activity, up to 15.29 mmol h −1 g −1 , 18.8 times higher than pure carbon nitride, surpassing many reported photocatalysts. This work represents a significant development and helps develop a sound foundation for future design principles in accelerating charge transfer.
科研通智能强力驱动
Strongly Powered by AbleSci AI