Multi-omics analysis of tumor angiogenesis characteristics and potential epigenetic regulation mechanisms in renal clear cell carcinoma

血管生成 生物 癌症研究 小桶 表观遗传学 肿瘤科 内科学 生物信息学 遗传学 基因 医学 基因表达 转录组
作者
Wenzhong Zheng,Shiqiang Zhang,Huan Guo,Xiaobao Chen,Zhangcheng Huang,Shaoqin Jiang,Mengqiang Li
出处
期刊:Cell Communication and Signaling [BioMed Central]
卷期号:19 (1) 被引量:52
标识
DOI:10.1186/s12964-021-00728-9
摘要

Abstract Background Tumor angiogenesis, an essential process for cancer proliferation and metastasis, has a critical role in prognostic of kidney renal clear cell carcinoma (KIRC), as well as a target in guiding treatment with antiangiogenic agents. However, tumor angiogenesis subtypes and potential epigenetic regulation mechanisms in KIRC patient remains poorly characterized. System evaluation of angiogenesis subtypes in KIRC patient might help to reveal the mechanisms of KIRC and develop more target treatments for patients. Method Ten independent tumor angiogenesis signatures were obtained from molecular signatures database (MSigDB) and gene set variation analysis was performed to calculate the angiogenesis score in silico using the Cancer Genome Atlas (TCGA) KIRC dataset. Tumor angiogenesis subtypes in 539 TCGA-KIRC patients were identified using consensus clustering analysis. The potential regulation mechanisms was studied using gene mutation, copy number variation, and differential methylation analysis (DMA). The master transcription factors (MTF) that cause the difference in tumor angiogenesis signals were completed by transcription factor enrichment analysis. Results The angiogenesis score of a prognosis related angiogenesis signature including 189 genes was significantly correlated with immune score, stroma score, hypoxia score, and vascular endothelial growth factor (VEGF) signal score in 539 TCGA KIRC patients. MMRN2, CLEC14A, ACVRL1, EFNB2, and TEK in candidate gene set showed highest correlation coefficient with angiogenesis score in TCGA-KIRC patients. In addition, all of them were associated with overall survival in both TCGA-KIRC and E-MTAB-1980 KIRC data. Clustering analysis based on 183 genes in angiogenesis signature identified two prognosis related angiogenesis subtypes in TCGA KIRC patients. Two clusters also showed different angiogenesis score, immune score, stroma score, hypoxia score, VEGF signal score, and microenvironment score. DMA identified 59,654 differential methylation sites between two clusters and part of these sites were correlated with tumor angiogenesis genes including CDH13, COL4A3, and RHOB. In addition, RFX2, SOX13, and THRA were identified as top three MTF in regulating angiogenesis signature in KIRC patients. Conclusion Our study indicate that evaluation the angiogenesis subtypes of KIRC based on angiogenesis signature with 183 genes and potential epigenetic mechanisms may help to develop more target treatments for KIRC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yydsyk完成签到,获得积分10
刚刚
3秒前
老白完成签到,获得积分10
8秒前
sscss完成签到,获得积分10
9秒前
蜀山刀客完成签到,获得积分10
12秒前
青青完成签到 ,获得积分10
12秒前
rice0601完成签到,获得积分10
13秒前
湖以给拿捏陕科大的求助进行了留言
13秒前
迅速凝竹完成签到 ,获得积分10
14秒前
龙傲天完成签到,获得积分10
14秒前
从心随缘完成签到 ,获得积分10
18秒前
LingYun完成签到,获得积分10
19秒前
20秒前
辛勤的泽洋完成签到 ,获得积分10
21秒前
chrysan完成签到,获得积分10
21秒前
犹豫代曼完成签到,获得积分10
22秒前
23秒前
典雅三颜完成签到 ,获得积分10
24秒前
叼面包的数学狗完成签到 ,获得积分10
25秒前
小周完成签到 ,获得积分10
26秒前
深情安青应助一个小胖子采纳,获得10
27秒前
一枝完成签到 ,获得积分10
28秒前
zyw完成签到 ,获得积分10
28秒前
cgliuhx完成签到,获得积分10
29秒前
光亮面包完成签到 ,获得积分10
29秒前
慕青应助hefang采纳,获得10
30秒前
30秒前
小李老博应助拓跋涵易采纳,获得10
31秒前
顺顺利利毕业完成签到 ,获得积分10
31秒前
wzy13647744027完成签到,获得积分10
33秒前
着急的千山完成签到 ,获得积分10
33秒前
俏皮诺言发布了新的文献求助10
34秒前
chenxi发布了新的文献求助10
36秒前
38秒前
39秒前
喝开水完成签到 ,获得积分10
39秒前
烙饼完成签到 ,获得积分10
42秒前
嘟噜完成签到 ,获得积分10
43秒前
44秒前
星辰大海应助lilycat采纳,获得10
45秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Interpretability and Explainability in AI Using Python 200
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
Null Objects from a Cross-Linguistic and Developmental Perspective 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833955
求助须知:如何正确求助?哪些是违规求助? 3376373
关于积分的说明 10492814
捐赠科研通 3095877
什么是DOI,文献DOI怎么找? 1704767
邀请新用户注册赠送积分活动 820104
科研通“疑难数据库(出版商)”最低求助积分说明 771859