Evaluation of environmental factors affecting the quality of Codonopsis pilosula based on chromatographic fingerprint and MaxEnt model

指纹(计算) 排序 重复性 接收机工作特性 计算机科学 环境科学 人工智能 数学 统计 机器学习
作者
Guang‐Zhen Wan,Li Wang,Ling Jin,Juan Chen
出处
期刊:Industrial Crops and Products [Elsevier BV]
卷期号:170: 113783-113783 被引量:39
标识
DOI:10.1016/j.indcrop.2021.113783
摘要

The quality control of Traditional Chinese medicine (TCM) is rather challenging owing to the diversity and complexity of chemical components, which fluctuate with geographic origin and growth environment. In this study, a comprehensive strategy based on ultra-high performance chromatographic (UPLC) fingerprint technique and MaxEnt model was proposed to evaluate the effects of environmental factors on the quality of Codonopsis pilosula. An UPLC analytical method was developed and validated by precision, repeatability and stability, and then applied to analyze 91 sets of samples collected from different sites of Dingxi district, Gansu province, China (one of the geo-authentic producing areas of Codonopsis pilosula). With a similarity evaluation software, a standard UPLC fingerprint was obtained and 23 common peaks were found out. The MaxEnt model was established based on the principle of maximum entropy and its accuracy was evaluated by the receiver operating characteristic (ROC) curve and the area under the curve (AUC). Based on the UPLC fingerprint and MaxEnt model, the potential habitat suitability distribution of Codonopsis pilosula in Dingxi district was obtained, and the correlation model between ecological factors and chemical components was established. With the spatial analysis function of ArcGIS, the quality zoning map of Codonopsis pilosula was further drawn integrating the above distribution map of potential habitat suitability and the correlation model. The research results could provide a reference for the selection of planting area and the production regionalization of an herbal medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
火星上小土豆完成签到 ,获得积分10
1秒前
虹归于叶完成签到 ,获得积分10
5秒前
kanong完成签到,获得积分0
9秒前
开拖拉机的医学僧完成签到 ,获得积分10
13秒前
白凌风完成签到 ,获得积分10
13秒前
Johnpick应助微笑枫叶采纳,获得10
19秒前
gsji完成签到,获得积分10
23秒前
25秒前
满意代萱完成签到 ,获得积分10
26秒前
29秒前
符从丹完成签到,获得积分10
30秒前
ygr完成签到,获得积分0
32秒前
乐悠悠完成签到 ,获得积分10
32秒前
科研小虫发布了新的文献求助10
34秒前
John完成签到 ,获得积分10
39秒前
mark33442完成签到,获得积分10
49秒前
49秒前
符从丹发布了新的文献求助10
50秒前
乔木木完成签到,获得积分10
1分钟前
HoHo完成签到 ,获得积分10
1分钟前
沈惠映完成签到 ,获得积分10
1分钟前
TY完成签到 ,获得积分10
1分钟前
无为完成签到 ,获得积分10
1分钟前
魔幻的妖丽完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
热心雪一完成签到 ,获得积分10
1分钟前
1分钟前
英俊的铭应助ma采纳,获得10
1分钟前
changfox完成签到,获得积分10
1分钟前
1分钟前
1分钟前
ma发布了新的文献求助10
1分钟前
倩倩完成签到 ,获得积分10
1分钟前
科研佟完成签到 ,获得积分10
1分钟前
1分钟前
一独白完成签到,获得积分10
1分钟前
科研小虫完成签到,获得积分10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Interpretability and Explainability in AI Using Python 200
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
Null Objects from a Cross-Linguistic and Developmental Perspective 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833913
求助须知:如何正确求助?哪些是违规求助? 3376330
关于积分的说明 10492632
捐赠科研通 3095861
什么是DOI,文献DOI怎么找? 1704748
邀请新用户注册赠送积分活动 820104
科研通“疑难数据库(出版商)”最低求助积分说明 771859