The effect of Si addition and thermomechanical processing in an Fe-Mn alloy for biodegradable implants: Mechanical performance and degradation behavior

材料科学 合金 热机械加工 微观结构 腐蚀 退火(玻璃) 生物相容性 冶金 复合材料 奥氏体不锈钢 延展性(地球科学) 粒度 降级(电信) 蠕动 计算机科学 电信
作者
Jacopo Fiocchi,Jannis Nicolas Lemke,Stefano Zilio,Carlo Alberto Biffi,Alberto Coda,Ausonio Tuissi
出处
期刊:Materials today communications [Elsevier]
卷期号:27: 102447-102447 被引量:10
标识
DOI:10.1016/j.mtcomm.2021.102447
摘要

Among iron-based materials, the Fe-Mn system appears to be highly suitable for the development of biodegradable metals for orthopaedic and vascular applications. The versatility of tailoring such steels by alloying provides many opportunities to customise biodegradable devices. In the field of applications where a high load-bearing capacity is required, the addition of Si could constitute an effective strategy to improve the mechanical properties while maintaining a similar corrosion susceptibility and biocompatibility. In this study, the microstructure, mechanical properties, and corrosion behaviour of Fe-30 Mn-5Si (wt.%) alloy are presented, discussed, and assessed in comparison with a binary Fe-30 Mn formulation. Emphasis is placed on characterising the alloys in processed conditions by using conventional thermomechanical rolling and annealing techniques, which are feasible and allow for scale-up. Such techniques affect phases equilibrium, internal stresses and grain size, thus altering the degradation behaviour. The addition of Si resulted in excellent microstructural homogeneity and was used to tailor the relative abundances of austenitic and martensitic phases by applying different heat treatment strategies. As a result, the mechanical resistance was improved by 70 % compared to the base alloy, the strain hardening ability was improved while keeping good ductility. Electrochemical corrosion tests and static degradation experiments showed that both alloys corrode at a similar rate, although the addition of Si appeared to induce a slower degradation in the initial stage and a faster one in the long term.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
luminous完成签到,获得积分10
刚刚
无限薯片完成签到,获得积分20
1秒前
传奇3应助perdgs采纳,获得10
1秒前
单薄的咖啡完成签到,获得积分10
1秒前
悦己发布了新的文献求助10
2秒前
2秒前
Akim应助小余同学采纳,获得10
2秒前
虚幻紫发布了新的文献求助10
3秒前
4秒前
5秒前
祝志泽发布了新的文献求助10
5秒前
zw完成签到,获得积分10
6秒前
浮游应助我要发sci采纳,获得10
8秒前
1111111111111111完成签到,获得积分20
8秒前
liuyuannzhuo发布了新的文献求助10
9秒前
9秒前
llll发布了新的文献求助10
10秒前
10秒前
所所应助有机哈基米采纳,获得10
11秒前
Mandy完成签到 ,获得积分10
11秒前
Nicolas完成签到,获得积分10
11秒前
11秒前
Jokerc完成签到,获得积分10
12秒前
12秒前
612848发布了新的文献求助10
12秒前
13秒前
汉堡包应助复杂刺猬采纳,获得10
13秒前
14秒前
科目三应助木子采纳,获得10
15秒前
313发布了新的文献求助10
15秒前
huy发布了新的文献求助10
15秒前
蚝里蟹完成签到,获得积分10
16秒前
cttc完成签到,获得积分10
16秒前
早安发布了新的文献求助10
16秒前
perdgs发布了新的文献求助10
16秒前
Who完成签到,获得积分10
17秒前
Freening应助lu采纳,获得10
17秒前
17秒前
娟儿Carie完成签到 ,获得积分10
17秒前
Unlung发布了新的文献求助10
17秒前
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5287232
求助须知:如何正确求助?哪些是违规求助? 4439680
关于积分的说明 13822419
捐赠科研通 4321690
什么是DOI,文献DOI怎么找? 2372100
邀请新用户注册赠送积分活动 1367648
关于科研通互助平台的介绍 1331104